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Abstract. Conditional Random Fields are among the most popular
techniques for image labelling because of their flexibility in modelling
dependencies between the labels and the image features. This paper ad-
dresses the problem of efficient classification of partially occluded objects.
For this purpose we propose a novel Gaussian Mixture Model based on
a sequential training procedure, in combination with multi-level CRF-
framework. Our approach is evaluated on urban aerial images. It is shown
to increase the classification accuracy in occluded areas by up to 14,4%.

1 Introduction

Labeling of image pixels is a classical problem in pattern recognition. Prob-
abilistic models of context with the goal of achieving a smooth classification
result have been increasingly used to model dependencies between neighbouring
image sites. A recent comparison of smooth labelling techniques for remote sens-
ing imagery has shown that this is essential, with Conditional Random Fields
(CRF) [12] performing best among the compared techniqes [18].

CRF have been applied successfully to many labelling tasks in computer
vision and remote sensing [12, 18, 19, 22], but they have problems with proper
labelling of partially occluded objects. Occlusion of roads by trees or cars has
been known to be a major problem of road extraction from remote sensing
imagery for a long time. Model-based techniques have tried to overcome this
problem by treating such objects as context objects in an ad-hoc manner [8],
but a sound statistical treatment of the problem is still missing.

Previous work on the recognition of partially occluded objects includes [13],
where the objects in the scene are represented as an assembly of parts. The
method is robust to the cases where some parts are occluded and, thus, can
predict labels for occluded parts from neighbouring unoccluded sites. However,
it can only handle small occlusions, and it does not consider the relations between
the occluded and the occlusion objects. We handle this problem by using a two-
layered CRF (tCRF) [10], which explicitly models two class labels for each image
site, one for the occluded object and one for the occluding one. In this way, the
3D structure of the scene is explicitly considered in the structure of the CRF.
Labelling is supported by depth information obtained from image matching.

There have been a few attempts to include multiple layers of class labels in
CRFs [11, 19, 22, 23]. However, these methods cannot be applied to our problem.
Firstly, they use part-based models where the additional layer does not explicitly
refer to occlusions, but encodes another label structure. Furthermore, many of



them rely on object detectors. Thirdly, in vertical views (typical in remote sens-
ing), models based on the absolute position or orientation in the image cannot be
applied because there is no natural definition of a direction of reference such as
the vertical in images of street scenes; applying such models would imply learn-
ing models of the distribution of features relative to the nadir point of an image
or to the North direction. None of these publications use depth information as
an additional cue to deal with occlusions.

tCRF does not need additional foreground object-detectors in order to sep-
arate the foreground from the background level. The information from neigh-
bouring unoccluded objects as well as from the occluding layer will contribute
to an improved labelling of occluded objects, assuming occluded objects show
some spatial continuity. The interaction model between neighbouring image sites
considers the relative frequency of class transitions, which is different from stan-
dard interaction terms such as the contrast-sensitive Potts-Model [2]. In this
paper we also propose a new interaction model between two tCRF layers, wich
is based on directed graph edges - tCRFd. For the data-dependent terms we use
Gaussian Mixture Models (GMM) [16]. Training of GMM is frequently done by
Expectation Maximization (EM), which, due to its iterative nature, is relatively
slow and requires all the training data to be held in memory [14]. An alternative
method for estimation GMM parameters could be the sequential Monte Carlo
method, also known as Partcle Filters (PF) [7], which are usually used to es-
timate Bayesian models. Despite the fact that the PF have sequential nature,
they are still based on the simulation model and therefore are very memory de-
manding. In order to reduce the memory consumption and to speed up training,
we propose a new sequential learning scheme which is considerably faster than
EM . Our method is demonstrated on the task of correctly labelling urban scenes
containing crossroads, one of the major problems in road extraction [15], with
the main goal of correctly predicting the class labels of image sites corresponding
to the road surface.

2 Conditional Random Fields (CRF)

We assume an image y to consist of M image sites (pixels or segments) i ∈ S
with observed data yi, i.e., y = (y1,y2, . . . ,yM )T , where S is the set of all sites.
With each site i we associate a class label xi from a given set of classes C.
Collecting the labels xi in a vector x = (x1, x2, . . . , xM )T , we can formulate the
classification problem as finding the label configuration x̂ that maximises the
posterior probability of the labels given the observations, p(x|y). A CRF is a
model of p(x | y) with an associated graph whose nodes are linked to the image
sites and whose edges model interactions between neighbouring sites. Restricting
ourselves to a pairwise interactions, p(x|y) can be modelled by [12]:

p(x | y) =
1

Z

∏
i∈S

ϕi(xi,y)
∏
j∈Ni

ψij(xi, xj ,y). (1)

In Eq. 1, ϕi(xi,y) are the association potentials linking the observations to
the class label at site i, ψij(xi, xj ,y) are the interaction potentials modelling the
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dependencies between the class labels at two neighbouring sites i and j and the
data y, Ni is the set of neighbours of site i, and Z is a normalizing constant.

3 Two-Level Conditional Random Fields (tCRF)

In order to classify partially occluded regions we distinguish objects correspond-
ing to the base level, i.e. the most distant objects that cannot occlude other
objects but could be occluded, from objects corresponding to the occlusion level,
i.e. all other objects. In a two-level CRF, two class labels xbi ∈ Cb and xoi ∈ Co
are determined for each image site i. They correspond to the base and occlusion
levels, respectively; Cb and Co are the corresponding sets of class labels with
Cb

⋂
Co = ∅. In general, one occlusion level is sufficient for remote sensing im-

agery. In our application, Cb consists of classes such as road or building, whereas
Co includes classes such as car and tree. Co includes a special class void ∈ Co to
model situations where the base level is not occluded. We model the posterior
probability p(xb,xo|y) directly, expanding the model in Eq. 1:

p(xb,xo|y) =
1

Z

∏
i∈S

ξi(x
b
i , x

o
i )

∏
l∈{o,b}

ϕli(x
l
i,y)

∏
j∈Ni

ψlij(x
l
i, x

l
j ,y). (2)

The association potentials ϕli, l ∈ {o, b} link the data y with the class labels xli
of image site i. They are related to the probability of a site i to take labels xli
given all image data y and ignoring the effects of other sites in the image. The
within-level interaction potentials ψlij , model the dependencies between the data
y and the labels at two neighbouring sites i and j at each level. They are related
to the probability of how likely the two sites at level l are to take the labels
xli and xlj given the image data y. Finally, an inter-level interaction potential

ξ(xbi , x
o
i ) is defined to model the dependencies between labels from different

levels, xbi and xoi . It expresses how likely an object from the base level with
class label xbi could be occluded by an object from the occlusion level with class
label xoi , ignoring the data y. Fig. 1 shows the structure of our tCRFd model.
Two levels are split mainly to increase the accuracy of the labelling of occluded
regions, where the association potentials cannot provide the base level nodes
with reliable information because the corresponding data are not observable.

Training the parameters of the potentials in Eq. 2 requires fully labelled
training images. The classification of new images is carried out by maximizing the
posterior probability in Eq. 2. Our definitions of the potentials and the techniques
used for training and inference are described in the subsequent sections.

3.1 Potential Functions

Association Potential: Omitting the superscript indicating the level of the
model, the association potentials ϕi(xi,y) are related to the probability of a
label xi taking a value c given the data y by ϕi(xi,y) ∝ p(xi = c|fi(y)) [12],
where the image data are represented by site-wise feature vectors fi(y) that may
depend on all the data y. The definition of fi(y) may vary with the dataset. We
use a GMM for p(xi = c | fi(y)) [16]:
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xo1 xo2 xo3 xo4 xo5

xb1 xb2 xb3 xb4 xb5

y1 y2 y3 y4 y5

Fig. 1. Structure of the tCRF model. The second dimension and additional links be-
tween data and labels are omitted for simplicity. Squares: observations; circles: labels.
The dark nodes correspond to a region with occlusion.

p(xi = c | fi(y)) =

Nc∑
k=1

πck · N (fi(y), µck,Σck). (3)

In Eq. 3, N (fi(y), µck,Σck) is the probability density function of a Gaussian
with expectation µck and covariance matrix Σck, and πck are the mixture com-
ponents measuring the contribution of cluster k to the joint probability density
of class c. For each class c there are Nk sets of parameters πck, µck, Σck. This
applies to the models both for the base and for the occlusion levels, i.e. ϕbi (x

b
i ,y)

and ϕoi (x
o
i ,y). The parameters for each class are determined from training data

independently from each other, using a sequential learning approach explained
in Section 3.3. In our experiments, we compare the tCRF model based on the
GMM association potential with a model that uses a naive Bayes model with
p(xi = c|fi(y)) =

∏
k p(f

k
i |xi = c), where fki is the kth element of fi(y) and the

probabilities p(fki |p(xi = c) are derived from the histograms of the feature fki [1].

Within-Level Interaction Potential: This potential describes how likely the
pair of neighbouring sites i and j is to take the labels (xi, xj) = (c, c′) given
the data: ψij(xi, xj ,y) ∝ p(xi = c, xj = c′|y) [12]. We generate a 2D his-
togram h′ψ(xi, xj) of the co-occurrence of labels at neighbouring sites from
the training data; h′ψ(xi = c, xj = c′) is the number of occurrences of the
classes (c, c′) at neighbouring sites i and j. We scale the rows of h′ψ(xi, xj)
so that the largest value in a row will be one to avoid a bias for classes cov-
ering a large area in the training data, which results in a matrix hψ(xi, xj).
We obtain ψij(xi, xj ,y) by applying a penalization depending on the Euclidean
distance dij = ‖fi(y)− fj(y)‖ of the feature vectors fi and fj to the diagonal of
hψ(xi, xj):

ψij(xi, xj ,y) ≡ ψij(xi, xj , dij) =

{
λ√

λ2+d2ij
· hψ(xi, xj) if xi = xj

hψ(xi, xj) otherwise
(4)

In Eq. 4, λ determines the relative weight of the within-level interaction potential
compared to the association potential. As the largest entries of hψ(xi, xj) are
usually found in the diagonals, a model without the data-dependent term in Eq. 4
would favour identical class labels at neighbouring image sites and, thus, result
in a smoothed label image. This will still be the case if the feature vectors fi and
fj are identical. However, large differences between the features will reduce the
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impact of this smoothness assumption and make a class change between neigh-
bouring image sites more likely. This model differs from the contrast-sensitive
Potts model [2] by the use of the normalised histograms hψ(xi, xj) in Eq. 4.
As a consequence, the likelyhood of a class transition depends on the frequency
with which it occurs in the training data. Again, the training of the models for
the base and the occlusion levels, ψbij(x

b
i , x

b
j ,y) and ψoij(x

o
i , x

o
j ,y), respectively,

are carried out independently from each other using fully labelled training data.

Inter-Level Interaction Potential: This potential describes how likely xbi is
to take the value c ∈ Cb given that the label xoi from the occlusion level takes
the value c′ ∈ Co: ξi(xbi , xoi ) = p(xbi = c|xoi = c′). We generate a 2D histogram
h′ξ(x

b
i , x

o
i ) of the co-occurrence of labels at different layers and the same image

site from the training data; h′ξ(c, c
′) is the number of image sites in the training

data with xbi = c and xoi = c′. The rows of h′ξ(x
b
i , x

o
i ) are scaled so that the

largest value in a row will be one, resulting in a matrix hξ(x
b
i , x

o
i ) that is the

basis for the potential ξi(x
b
i , x

o
i ). Scaling is necessary to avoid a bias for classes

covering a large area in the training data. In our experiments we will compare
two different models for handling the inter-level interaction potential. Our model
tCRFd corresponds to Fig. 1, where the edges connecting the two levels are
directed, whereas in the state-of-the-art tCRFu model, the edges connecting the
two levels are undirected. This difference only affects the inference (Section 3.2).

3.2 Training and Inference

Exact methods for training and inference of a CRF are computationally in-
tractable [12, 21]. Thus, approximate solutions have to be used. We determine
the parameters of all potentials separately. The interaction potentials are derived
from histograms of the co-occurrence of classes at neighbouring image sites in
the way described in Section 3.1. The parameter λ in Eq. 4 is set to λ = 4, which
was determined empirically; it could also be determined by a procedure such as
cross validation [20]. The training of the GMM is described in Section 3.3. For in-
ference we use Loopy Belief Propagation, a standard message passing technique
for probability propagation in graphs with cycles [21]. In the model tCRFu, mes-
sages are sent from the base to the occlusion level and vice versa; in tCRFd,
messages will only be sent from the occlusion level to the base level.

3.3 Sequential Gaussian Mixture Model Training

EM requires the simultaneous storage and processing of all the training samples
and the prior definition of the number Nk of Gaussians in the mixture model [14].
In order to overcome these problems we propose a sequential training method
for estimating the GMM parameters (cf. Algorithm 1). It requires two param-
eters, a threshold dθ defining the minimum distance between Gaussians, and
the maximum number Gmax of Gaussians in the mixture model. We consider
each training sample as an evidence for parameters µck and Σck of one of the
Gaussians in Eq. 3. The samples are processed sequentially in the order in which
they are collected. For each new sample we check whether it belongs to an ex-
isting Gaussian component k by evaluating the Euclidian distances dk between
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the new sample and the centres µck of the existing components. If the smallest
distance dmin is shorter than dθ, the sample is assigned to the component kmin
corresponding to dmin, and the parameters of that component are updated. This
will affect the centre µck of that component, and consequently we check whether
we can merge it with any of the others, this time by comparing the Euclidean
distances of the class centres to the threshold dθ. This is done to avoid having too
many components. If the training sample does not fit to any existing component
(which is, of course, the case for the first training sample to be processed), we
generate a new Gaussian component and initialise its centre µck by that sample.
However, this is only done if the number of Gaussian components is lower than
the limit Gmax, otherwise we discard the training sample. This method is fast
because no iterations are required, and it does not require much memory due to
its sequential nature. Moreover, we do not need to define the strict number of
Gaussians in the GMM, but this number is adjusted to the training data.

Algorithm 1: Sequential GMM training

Data: distance threshold dθ; max. number of Gaussians Gmax; sample points;
Result: GaussianMixture

1 while sample points do
2 p← GetNextPoint();
3 if GaussianMixture.N = 0 then
4 N ← new Gaussian();
5 N .AddPoint(p);
6 GaussMixture.Append(N );

7 else
8 for Nk ∈ GaussianMixture do
9 dk = distance(p,Nk.µ);

10 (dmin, kmin)←MIN(dk);
11 if (dmin > dθ) AND (GaussianMixture.N < Gmax) then
12 N ← new Gaussian();
13 N .AddPoint(p);
14 GaussMixture.Append(N );

15 else
16 Nkmin .AddPoint(p);

17 for Nk,Nm ∈ GaussianMixture, k 6= m do
18 d = distance(Nk.µ,Nm.µ);
19 if d < dθ then
20 Nk.MergeWith(Nm);
21 GaussianMixture.Erase(Nm);

4 Features

Our experiments are based on a colour infrared (CIR) image (orthophoto) and
a digital surface model (DSM) image, where grayvalues represent the height of
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the earth’s surface, including all objects on it. Having a DSM, it is possible
to estimate the digital terrain model (DTM), which, in contrast to a DSM,
represents the bare ground surface without any objects like plants and buildings.
We do this estimation by applying to the DSM a morphological opening filter
with a structural element size corresponding to the size of the largest off-terrain
structure in the scene, followed by a median filter with the same kernel size. Both
CIR and DSM images are defined on the same grid. From these input data, we
derive the site-wise feature vectors fi(y), consisting of 18 features. For numerical
reasons, features are scaled and quantized by 8 bit. We use patches of 5×5 pixels
as image sites for calculating fi(y).

In this paper we use the following features: the normalized difference vegeta-
tion index, derived from the near infrared and the red band of the CIR image;
the saturation component in LHS colour space; the intensity, calculated as the
average of the blue and green channels. These 3 features are derived at 3 different
scales: for the individual sites and as the average in a local neighbourhood of
10× 10 and 100× 100 pixels. Next we determine the variances of intensity, sat-
uration and the gradient determined in a local neighbourhood of 13× 13 pixels
of each site. Road pixels are usually found in a certain distance either from road
edges or road markings. The distance of an image site to its nearest edge pixel
is used as the next feature. We also use histograms of oriented gradients (HOG)
features [5], calculated for cells of 7 × 7 pixels and using blocks of 2 × 2 cells
for normalization. Each histogram consists of 9 orientation bins. The gradient
directions are determined relative to the main direction of the entire scene, sup-
posed to correspond to the direction of one of the intersecting roads. We extract
three features from the HOG descriptor, namely the value corresponding to the
main direction and the values at its two neighbouring bins. Finally, we use the
height difference between the DSM and the DTM as a feature, corresponding to
the relative elevation of objects above ground. The last feature is the gradient
strength of the DSM.

5 Evaluation

To evaluate our model we selected 90 crossroads from the Vaihingen data set1.
For each crossroad, a CIR and a DSM were available, each covering an area
of 80 × 80 m2 with a ground sampling distance of 8 cm. The DSM and the
orthophoto were generated from multiple aerial CIR images using semi-global
matching [9]. Given our definition of the image sites, each graphical model con-
sisted of 200 × 200 nodes. The neighbourhood Ni of an image site i is chosen
to consist of the direct neighbours of i in the data grid. We defined 6 classes,
namely asphalt (asp.), building (bld.), tree, grass (gr.), agricultural (agr.) and
car, so that Cb = {asp., bld., gr., agr.} and Co = {tree, car, void}. The two-level
reference was generated by manually labeling the orthophotos using these classes
and assumptions about the continuity of objects such as road edges in occluded
areas to define the reference of the base level. Other existing benchmark datasets

1 Provided by German Society for Photogrammetry, Rem. Sensing and Geoinf. [4].
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could not be used, because they are supplied with a one-layer reference only. For
the evaluation we used cross validation. In each test run, 89 images were used for
training, and the remaining one for testing. This was repeated so that each image
was used as a test image once. The results were compared with the reference;
we report the completeness / correctness of the results per class and the overall
accuracy [17]. Our CRF-classification is based on the DGM C++ library [6].

We carried out 3 sets of experiments. In the 1st set, we used the naive Bayes
model for the association potentials (Bayes), whereas in the 2nd set we used
GMM training based on the OpenCV implementation of EM [3] (emGMM).
Finally, in the 3rd set we evaluate our sequential GMM model (seqGMM). Each
set included three experiments: in experiment CRF, each layer was processed in-
dependently, thus the inter-level interaction potentials were not considered; Ex-
periments tCRFu and tCRFd used tCRF model with the inter-level interaction
potentials represented by undirected and directed edges, respectively (cf. Sec-
tion 3.1). The completeness and the correctness of the results achieved in these
experiments are shown in Tab. 1. Fig. 2 shows the results for three crossroads.

Bayes emGMM seqGMM
CRF tCRFu tCRFd CRF tCRFu tCRFd CRF tCRFu tCRFd

Cm. Cr. Cm. Cr. Cm. Cr. Cm. Cr. Cm. Cr. Cm. Cr. Cm. Cr. Cm. Cr. Cm. Cr.
asp. 83.7 77.1 85.7 73.9 82.8 81.2 93.8 58.0 86.6 81.6 83.3 86.6 93.7 58.2 86.5 81.7 83.8 86.5
bld. 65.7 92.2 63.8 93.3 75.4 88.3 72.2 92.0 73.6 91.6 81.0 86.7 72.0 92.2 73.6 91.7 81.0 86.8
gr. 51.6 75.9 88.9 77.2 88.3 81.5 58.5 81.0 91.2 78.8 90.1 83.4 58.6 81.0 91.5 78.7 90.2 83.9
agr. 36.2 96.9 38.4 95.8 68.3 81.5 47.5 97.4 47.9 96.9 81.0 88.5 47.5 97.9 47.8 97.2 80.9 88.5
OAb 69.1 81.5 82.3 71.0 82.3 85.7 71.2 82.4 85.6
void 85.8 94.3 88.3 93.5 85.8 94.3 90.2 91.9 90.7 91.1 90.0 92.5 90.4 92.0 90.6 91.2 90.4 92.0
tree 82.9 58.5 79.0 61.9 82.9 58.5 71.6 64.2 64,8 70.5 71.7 64.5 71.8 64.3 64,7 70.7 71.8 64.3
car 0.5 17.8 0.0 17.7 0.5 17.8 1.2 40.5 46.7 13.4 1.3 40.9 1.3 40.7 46.5 13.3 1.3 40.7
OAo 84.5 85.8 84.5 86.1 87.2 86.2 86.0 87.3 86.0

tt 9.7 sec 546.0 sec 89.8 sec
tc 6.4 sec 64.0 sec 12.5 sec

RAM 1.2 MB 2.44 GB 1.5 MB

Table 1. Completeness (Cm.), Correctness (Cr.), overall accuracy (OA) [%] and tim-

ings for IntelR© Core
TM

i7 CPU 950 with 3.07 GHz required for training (tt) and
classification (tc).

In the seqGMM :CRF experiment, the overall accuracy of the classification
was 71.2% for the base level and 86.0% for the occlusion level. Considering the
inter-level interactions in the seqGMM :tCRFu and seqGMM :tCRFd experi-
ments increased the overall accuracy for the base level by 11% - 14%, with a
slight advantage for the model based on directed edges (seqGMM :tCRFd with
OAb=85.6%). This can be attributed by more accurate classification in the oc-
clusion areas (cf. Fig. 2, particularly the areas where roads are partially occluded
by trees). For the occlusion level, the overall accuracies of the seqGMM :tCRFu
and seqGMM :tCRFd experiments were 87.3% and 86.0%, respectively; in this
case, there is hardly any improvement over the variant not considering the inter-
level interactions seqGMM :CRF , and the model seqGMM :tCRFu performed
slightly better than the others. In all experiments, the results based on seqGMM
are very similar to those achieved for the emGMM and in the same time are
better than those achieved for the Bayes model, having similar behaviour. As
far as completeness and correctness are concerned, the major improvement is an
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increased correctness for asp. and an improved completeness for gr.. The class
agr., corresponding to fields, has a rather low completeness in the model tCRFu,
though a much better one in tCRFd. For the occlusion level, we observe the best
performance when using tCRFu. As we can see from the Tab. 1, it achieved the
best classification rate of the car class, though both the completeness and cor-
rectness of that class are still very low. This may be due to the fact that cars are
small compared to the size of an image site (40 cm). Without base level support,
they are smoothed out in the occlusion level (cf. Fig. 2).

The computation times for training the tCRFd model on 89 images were
9.7 sec and 89.8 sec for the Bayes and seqGMM models, respectively; the time
for inference was 6.4 sec and 12.5 sec, respectively, per image. The memory con-
sumption was slightly above 1 MB in both cases. For the emGMM experiments
the computation times were 546.0 sec for training and 64.0 sec per image for
inference, with a memory consumption of 2.44 GB. So seqGMM is much closer
to the Bayes in terms of calculation time and memory requirements, while being
close to emGMM in terms of classification accuracy.

Fig. 2. Three example crossroads. 1st col.: reference; 2nd col.: CRF; 3rd col.: tCRFu.
Occlusion level: 4th col.: reference; 5th col.: CRF; 6th col.: tCRFu.

6 Conclusion

We have presented a sequential approach for GMM training, which supports
a tCRF model for considering occlusions in classification. Due to the two-level
structure and incorporation of directed edges our model is capable of improv-
ing the accuracy of classification for partially occluded objects. Our sequential
approach is more than 50 times faster and needs far less memory than classi-
cal EM . The method was evaluated on a set of airborne images and showed
a considerable improvement of the overall accuracy in comparison to the CRF
and Bayes approaches. In the future we want to extend the model to an n-level
architecture, which will require the removal of the restriction Cb

⋂
Co = ∅.
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