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ABSTRACT: 

 

The precise classification and reconstruction of crossroads from multiple aerial images is a challenging problem in remote sensing. 

We apply the Markov Random Fields (MRF) approach to this problem, a probabilistic model that can be used to consider context in 

classification. A simple appearance-based model is combined with a probabilistic model of the co-occurrence of class label at 

neighbouring image sites to distinguish up to 14 different classes that are relevant for scenes containing crossroads. The parameters 

of these models are learnt from training data. We use multiple overlap aerial images to derive a digital surface model (DSM) and a 

true orthophoto without moving cars. From the DSM and the orthophoto we derive feature vectors that are used in the classification. 

One of the features is a car confidence value that is supposed to support the classification when the road surface is occluded by static 

cars. Our approach is evaluated on a dataset of airborne photos of an urban area by a comparison of the results to reference data. 

Whereas the method has problems in distinguishing classes having a similar appearance, it is shown to produce promising results if a 

reduced set of classes is considered, yielding an overall classification accuracy of 74.8%.  

 

 

                                                                 

*  Corresponding author.   

1. INTRODUCTION 

The automatic detection and reconstruction of roads has been an 

important topic of research in Photogrammetry and Remote 

Sensing for several decades. Considerable progress has been 

made, but the problem has not been finally solved. The 

EuroSDR test on road extraction has shown that road extraction 

methods are mature and reliable under favourable conditions, in 

particular in rural areas, but they are far from being practically 

relevant in more challenging environments as they exist in 

urban or suburban areas (Mayer et al., 2006).  
 

One of the main reasons for failure of road extraction 

algorithms noted by (Mayer et al., 2006) is the existence of 

crossroads, due to the fact that model assumptions about roads 

(e.g., the existence of parallel edges delineating a road) are hurt 

there. For this reason, specific models for the extraction of 

crossroads from images have been developed. Barsi and Heipke 

(2003) used neuronal networks for a supervised per-pixel 

classification of greyscale orthophotos in order to detect areas 

corresponding to crossroads, combining radiometric and 

geometric features. However, only examples for rural areas were 

shown. Ravanbakhsh et al. (2008a, 2008b) used a model based 

on snakes to delineate outlines of road surfaces at crossroads, 

including the delineation of traffic islands. The main reasons for 

failure of that method were occlusion of the road surface by cars 

and a complex 3D geometry, e.g. at motorway interchanges. 

The problem of occlusion by cars could be overcome if the 

position of cars were known in the images. Extensive overviews 

about methods for vehicle detection from optical aerial imagery 

can be found in (Stilla et. al., 2004) and (Hinz et. al., 2006).  

In this paper we propose a new method for the classification of 

scenes containing crossroads as a first step of a 3D 

reconstruction. Markov Random Fields (MRF; Geman & 

Geman, 1984) are employed for a raster-based classification. 

MRF offer probabilistic models for including context in the 

classification process by considering the statistical 

dependencies between the class labels at neighbouring image 

sites; cf. (Li, 2009) for more details on MRF and their 

applications in image analysis. We use multiple-overlap aerial 

images in order to derive a Digital Surface Model (DSM) that is 

used in the classification process to make it more robust with 

respect to ambiguities of the appearance of objects in a 2D 

projection of the scenes. In addition, we include information 

about cars by integrating the output of a car detector into the 

process. Our method is evaluated using 55 crossroads of the 

Vaihingen data set of the German Society of Photogrammetry, 

Remote Sensing and Geoinformation (DGPF).   

 

 

2. MARKOV RANDOM FIELDS 

Markov random fields (MRF) provide probabilistic models of 

context for the image labelling problem (Geman & Geman, 

1984; Li, 2009). Given image data y consisting of N image sites 

i  S with observed data yi, i.e., y = (y1, y2, …, yN)T, where S is 

the set of all sites, we want to assign a discrete class label xi 

from a given set of classes C to each site i. In this context, an 

image site can correspond to a single pixel or to an image 

segment. MRF are undirected graphical models that assume the 

data yi at image site i to depend on the class label xi at that site. 

In addition, the class label xi is modelled to be statistically 
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dependent on the class labels of its neighbouring image sites. 

As a consequence, the individual sites can no longer be labelled 

independently from each other. Collecting the class labels xi in a 

vector x = (x1, x2, …, xN)T, we want to find the label 

configuration x* that maximises the posterior probability of the 

labels given the data p(x | y), thus x* = arg maxx p(x | y). The 

posterior probability p(x | y) can be modelled by a Gibbs 

distribution (Geman & Geman, 1984):  
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In Eq. 1, Z is a normalization constant called the partition 

function, and Ni is the neighbourhood of data site i (thus, j is a 

neighbouring data site of i). The association potential i links 

the class label xi of image site i to the data yi observed at that 

site, whereas the pairwise interaction potentialij models the 

dependencies between the labels xi and xj of neighbouring sites i 

and j. The model is very general in terms of the definition of the 

functional model for both i and ij. Our definitions of the 

image sites and the neighbourhood Ni (thus, the structure of the 

graphical model) and the potential functions i and ij used in 

our application are described in Section 3.  

 

 

3. METHOD 

The goal of our method is the classification of scenes containing 

crossroads. The primary input consists of multiple aerial images 

and their orientation data. We require at least fourfold overlap 

of each crossroads from two different image strips in order to 

avoid occlusions as far as possible. In this paper, the images are 

assumed to be colour infrared (CIR) images, though the 

methodology can be transferred to other spectral configurations 

by adapting the definition of the features to be used for 

classification. In a preprocessing stage, these multiple images 

are used to derive a DSM by dense matching. After that, the 

DSM is used to generate a true orthophoto from each input 

image. As each of these orthophotos will contain void areas due 

to occlusions, they are all combined to a joint true orthophoto 

with only few occluded areas left. In this process, we take 

advantage of the multiple views to also eliminate moving cars.  

 

The DSM and the combined orthophoto are the input to the 

MRF-based classifier. In the classification process, we choose 

the image sites and, thus, the nodes of the graphical model, to 

correspond to small squares of n x n pixels of the joint true 

orthophoto. The neighbourhood Ni of an image site i in Eq. 1 

(which defines the edges of the graphical model) is chosen to 

consist of the four direct neighbours of site i in the image grid. 

We defined 14 classes that are characteristic for scenes 

containing crossroads both in an urban and in a rural setting, 

including road, building, grass, tree, car, but also sidewalk, 

traffic island, and sealed, the latter corresponding to off-road 

areas covered by asphalt, e.g. parking lots. Some of these 

classes have a very similar appearance in the data and are 

characterised by their relative spatial arrangement; however, it 

is possible to generate a new set of classes by combining some 

of the original ones, e.g. by merging all classes covered by 

asphalt (road, sidewalk, traffic island, sealed).  

 

From the orthophoto and the DSM we extract the feature 

vectors. We use three groups of features, namely image-based 

features, DSM features, and a specific feature that is used to 

characterize cars; the use of the latter feature is optional. In a 

training phase we use images that were labelled manually to 

determine the parameters of the association and interaction 

potentials in Eq. 1. Training the parameters of the interaction 

potentials requires fully labelled images. Once the parameters 

have been determined, the classification of new test images can 

be carried out by maximising the posterior probability in Eq. 1 

using the trained model. 

 

The individual components of our method, in particular pre-

processing, the definition of the potentials, the definition of the 

features and the methods used for training and inference are 

described in more detail in the subsequent sections.  

 

3.1 Preprocessing 

The first step of preprocessing is the generation of a DSM from 

the input images. We use the OpenCV implementation 

(OpenCV, 2012) of semiglobal matching (Hirschmüller, 2008) 

with the cost function of (Birchfield & Tomasi, 1998) to 

generate a disparity image for each possible pair of images. For 

each disparity image thus created, a DSM grid is generated in 

object space. Due to occlusions and matching errors, these raw 

DSMs will contain void areas, and there will also be height 

discrepancies, e.g. at roof overhangs. These raw DSMs are 

combined to a joint DSM by taking the median of the valid raw 

DSM heights at each position. Remaining void areas (e.g. 

caused by problems of the dense matcher in homogeneous 

image regions) are filled by an in-painting algorithm based on 

non-linear diffusion that is sensitive to height changes. In this 

process, we distinguish between void areas where the heights 

are to be interpolated from their surroundings (largely caused by 

matching errors) and areas where the heights are to be 

determined from the lowest surrounding areas (largely caused 

by occlusion) in a way similar to (Hirschmüller, 2008).  

 

The DSM is the basis for the generation of a true orthophoto 

from each of the original input images. Ray tracing is used to 

determine visibility in this process. The resulting raw 

orthophotos will have void areas caused by occlusion. Finally, 

these raw orthophotos are merged to a combined orthophoto. 

For each pixel of the combined orthophoto, the median of all 

valid colour vectors (i.e. the colour vectors from all raw 

orthophotos where the respective pixel is not marked as being 

void) is chosen. Due to the fact that we require at least four-fold 

overlap, this will result in an elimination of moving cars on the 

streets, which improves the prospects of automatic classification 

of road surfaces (Fig. 1).  

 

   
 

Figure 1: Detail of a test site. Left: DSM; centre: raw true 

orthophoto with void areas in black; right: combined 

true orthophoto. 

 

3.2 Association potential 

The association potential i(xi,yi) in Eq. 1 is related to the 

probability of observing the image data yi at data site i  S 

given that label xi takes a value c  C by 
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i(xi,yi)  log p(fi(y) | xi =c). Thus, i(xi,yi) is the log likelihood 

of the generative model with a smoothness prior on the labels 

expressed in Eq. 1. In this context, the image data are 

represented by site-wise feature vectors fi(y) that may depend 

on the data observed at site i and its local neighbourhood. Both 

the definition of the features and the dimension of the feature 

vectors fi(y) may vary from dataset to dataset, because the 

definition of appropriate and expressive features depends on the 

image resolution and also on the spectral information contained 

in the images. 

 

We use a simple model for the likelihood p(fi(y) | xi) and, 

consequently, for the association potential i(xi,yi). In the 

training phase, for each class we generate histograms of all 

features. These histograms are smoothed and normalised, and 

the smoothed and normalised histograms are used as probability 

density functions (pdf) p(fij | xi=c) = pc(fij | xi), where fij is the jth 

component of fi for the class c. Neglecting the statistical 

dependencies between the individual features fij, the likelihood 

p(fi(y) | xi=c) becomes the product of the probability density 

functions of the individual features, so that the association 

potential becomes the sum of the logarithms of these functions:  
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In Eq. 2, M is the dimension of the site-wise feature vectors 

fi(y). This is a very simplistic model, which is to be replaced by 

more appropriate ones in the future. Its advantage is that it is 

very fast to determine in training.  

 

3.3 Interaction Potential 

The pairwise interaction potential ij(xi,xj) in Eq. 1 is a 

measure for the influence of neighbouring labels xj on the class 

xi of image site i. The function ij(xi,xj) characterizes how 

likely the variable xi will take the value c, given that the variable 

xj from the neighbouring data site j  Ni takes the value c’, that 

is, ij(xi,xj)  log p(xi =c | xj =c’). 
 

In order to determine this probability, a 2D histogram of the co-

occurrence of labels at neighbouring interaction features is 

generated from the training data. The histogram corresponds to 

a (symmetric) matrix of dimension nc x nc, where nc is the 

number of classes to be discerned, and the matrix entry at (c, c’) 

is the number of occurrences of the classes (c, c’) at 

neighbouring pixels i and j. After generating the histogram 

matrix, its rows are scaled so that the largest value in a row 

(usually the diagonal element) will be one. This is done in order 

to compensate for different numbers of pixels per class in the 

training data, i.e. to guarantee, that p(xi =c | xj =c) will be the 

same for all classes c  C. The interaction potentials ij(xi,xj) 
are then defined as the logarithm of the scaled histogram matrix 

entries. It is a drawback of this type of scaling that ij(xi,xj) will 

no longer be symmetric.  

 

3.4 Definition of the Features  

As stated in Section 3.1, we derive a feature vector fi(y) for each 

image site i that consists of Mimg features derived from the 

orthophoto (image features) collected in a vector fimg, a feature 

derived from the DSM (fDSM) and, optionally, a car confidence 

feature (fcar). Consequently, the total number M of features is 

either M = Mimg + 1 or M = Mimg + 2, corresponding to 

fi(y)T = (fimg
T, fDSM) or fi(y)T = (fimg

T, fDSM, fcar), depending on 

whether the car confidence feature is used is or not. In any case, 

for numerical reasons all features are scaled linearly into the 

range between 0 and 255 and then quantized by 8 bit.  

 

3.4.1 Image features: We do not use the colour vectors of the 

images directly to define the site-wise image feature vectors fimg. 

In total, we determine 7 image features. The first three features 

are the normalized difference vegetation index (NDVI), derived 

from the near infrared and the red band of the CIR orthophoto, 

the saturation (sat) component after transforming the image to 

the LHS colour space, and image intensity (int), calculated as 

the average of the two non-infrared channels. We also make use 

of the variance of intensity (varint) and the variance of 

saturation (varsat), determined from a local neighbourhood of 

each pixel (7 x 7 pixels for varint, 13 x 13 pixels for varsat). The 

sixth image feature (dist) represents the relation between an 

image site and its nearest edge pixel; this feature should model 

the fact that road pixels are usually found in a certain distance 

either from road edges or road markings. We generate an edge 

image by thresholding the intensity gradient of the input image. 

Then, we determine a distance map from this edge image. The 

feature used in classification is the distance of an image site to 

its nearest edge pixel, taken from the distance map. The last 

image feature is the local gradient orientation, calculated in 

respect to the main gradient orientation (origrad). In order to 

compute the gradient orientation, we calculate two histograms 

of oriented gradients (HOG) (Dalal & Triggs, 2005), one 

considering a local neighbourhood (13 x 13 pixels in our 

experiments), and one from a larger neighbourhood (101 x 101 

pixels). Each histogram consists of 9 orientation bins. The 

feature is the difference between the angles corresponding to the 

histogram bins having the maximum entries in the two 

histograms. Thus, the image feature vector for each pixel is 

fimg = (NDVI, sat, int, varsat, varint, dist, origrad)
T. 

 

3.5.2 DSM feature: A coarse Digital Terrain Model (DTM) is 

generated from the DSM by applying a morphological opening 

filter with a structural element whose size corresponds to the 

size of the largest off-terrain structure in the scene, followed by 

a median filter with the same kernel size. The DSM feature is 

the difference between the DSM and the DTM, i.e., 

fDSM = DSM-DTM. This feature describes the relative elevation 

of objects above ground such as buildings, trees, or bridges.  

 

3.5.3 Car confidence feature: This is a feature that is supposed 

to be particularly useful for classifying cars. We use the output 

of the car detection algorithm described in (Leitloff et. al. 

2010). However, we do not use the binary image of detected 

cars, but the confidence image derived by that method. The 

calculation of these confidence values uses an extended set of 

Haar-like features (Lienhart et. al., 2003) as input for pixel-wise 

classification. The number of possible features depends on the 

size of image samples used for training the classifier. Even for a 

reduced GSD of 20 cm and the resulting image patch size of 30 

by 30 pixels more than 800,000 features exist. It is not possible 

to calculate all those features during classification. Thus, the 

number of features has to be reduced significantly during 

training. The idea of using Adaptive Boosting (Friedmann et. al. 

2000) for feature reduction has been introduced by Tieu & 

Viola (2004). Boosting is an ensemble learning method, which 

combines a set of simple classifiers to generate a strong 

classifier. The output of each base (weak) learner is a 

confidence value. The final classification is obtained from the 
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sum of confidence values of all weak learners. Generally stumps 

or classification trees are used as base classifier. Each node of a 

regression tree applies a threshold to only one feature. The 

thresholds and features are chosen so that the training error 

becomes minimal. Thus, the most distinguishing features are 

found during training. In our case only 350 features have been 

selected, which makes the final classification suitable for large 

datasets. More details about training the Boosting classifier can 

be found in our previous work (Leitloff et. al. 2010). The 

feature fcar is defined as the combined confidence value of the 

classifier.  

 

3.5 Training and Inference 

Training of MRF is complex if it is to be carried out in a 

probabilistic framework, mainly due to the fact that it requires 

an estimate for the partition function Z in Eq. 1, which is 

computationally intractable. Thus, approximate solutions have 

to be used for training. In our application, we determine the 

parameters of the association and interaction potentials 

separately. That is, given the training data (fully labelled 

images), the probabilities pc(fij | xi) are determined from 

histograms of the features fij (which are quantized by 8 bit for 

that purpose) of each class and smoothing, in the way described 

in Section 3.3. In a similar way, the interaction potentials are 

scaled versions of the 2D histograms of the co-occurrence of 

classes at neighbouring image sites in the way described in 

Section 3.4. Exact inference is also computationally intractable 

for MRF’s. For inference, we use a message passing algorithm, 

namely Loopy Belief Propagation (LBP), a standard technique 

for probability propagation in graphs with cycles that has shown 

to give good results in the comparison reported in 

(Vishwanathan et al., 2006).  

 

 

4. EXPERIMENTS 

4.1 Test Data and Test Setup 

Under the auspices of the DGPF a test data set over Vaihingen 

(Germany) was acquired in order to evaluate digital aerial 

camera systems (Cramer, 2010). It consists of several blocks of 

vertical images captured by various digital aerial camera 

systems at two resolutions. We used one of the DMC blocks to 

test our approach. The images are 16 bit pan-sharpened colour 

infrared images with a ground sampling distance (GSD) of 8 cm 

(flying height: 800 m, focal length: 120 mm). For our 

experiments, the radiometric resolution of the images had to be 

converted to 8 bit. The georeferencing accuracy is about 1 pixel. 

The nominal forward and side laps of the images are 65% and 

60%, respectively. As a consequence, each crossroads in the 

block is visible in at least four images.  
 

For our experiments, we selected 55 crossroads by digitizing 

their approximate centres. The set of crossroads contained 

examples from densely built-up urban and suburban as well as 

rural areas. For each crossroads, we generated a DSM and a true 

orthophoto, both with a GSD of 8 cm in the way described in 

Section 3.2; the size of the orthophotos used in our process was 

1000 x 1000 pixels, thus corresponding to 80 x 80 m2. In the 

training phase we use the original orthophotos (1000 x 1000 

pixels); for inference, squares of 5 x 5 pixels were used as nodes 

of the graphical model; thus, each graphical model consisted of 

200 x 200 nodes. For the car confidence feature we used a 

classifier trained on data of DLR's 3K-system (Kurz et. al. 

2011). The sample images have a resolution of 20 cm. Thus, the 

Vaihingen dataset is resampled to this resolution for 

classification. Due to different radiometric properties, the Haar-

like features are only calculated from intensity values. Both, 

resampling and exclusive use of intensity values limit the 

classification performance in this context.  
 

The ground truth was generated by manually labelling the image 

areas using altogether 14 classes (cf. Figure 2). We use the 

ground truth for the algorithm's training phase and for the 

evaluating the classification accuracy. In order to have a 

sufficient amount of training data, we had to use cross 

validation in our evaluation procedure: in each experiment, all 

images except one were used for training, and the remaining 

image served as a test image; this procedure was repeated 55 

times, each time using a different test image, so that in the end 

each image was used as a test image once. In all experiments, 

confusion matrices were determined from a comparison of the 

test images with the ground truth, as well as the completeness 

and the correctness of the results for each class and the overall 

classification accuracy (Rutzinger et al., 2009).  
 

We carried out four different experiments. In the first two 

experiments, we tried to separate all 14 classes; the only 

difference is the number of features we used. In the first 

experiment we used all features described in Section 3.5, 

including the car feature, whereas the second experiment was 

carried out without the car feature. In the third and the fourth 

experiments we reduced the set of classes to eight by merging 

classes having a similar appearance in the data. Again, the two 

experiments differ by the use of the car feature.  

 

4.2 Evaluation 

The confusion matrices as well as the completeness and the 

correctness of the results achieved in the first two experiments 

(the ones using 14 classes) are shown in Tables 1 and 2; an 

example for the classification result is shown in Fig. 2. The 

overall accuracy of the classification was 63.5% if the car 

feature was used and 63.3% if it was not used. Thus, the overall 

accuracy, while being relatively poor in both cases, was hardly 

improved by that feature. The relatively poor overall accuracy is 

caused by the fact that some of the classes have a very similar 

appearance in the data, e.g. sealed, road, sidewalk, and traffic 

islands. Reasonable values of completeness and correctness 

could be achieved for buildings (> 80%). For trees, the 

completeness is also larger than 80%, but the correctness is 

much lower (62%). Both, for buildings and trees the main error 

source was errors in the DSM caused by areas with hardly any 

texture (buildings) or abrupt height changes (trees). One of the 

problems was the information reduction caused by the 

conversion of the images to 8 bit, but apparently the openCV 

matcher also had problems with non-fronto-parallel surfaces 

and with different illumination. The main impact of the car 

confidence feature was a considerable reduction of the false 

positive car detections, though the correctness of 28% achieved 

with this feature is still not satisfactory.  
 

The evaluation of the experiments carried out with the reduced 

set of classes is presented in Tables 3 and 4. The overall 

accuracy increased to about 75%, which indicates that our 

classification scheme is reasonable, though there is room for 

improvement. The main error source is the confusion between 

trees, grass, and agriculture, again partly caused by DSM 

errors. In this setting, the impact of the car confidence feature is 

similar to its impact in the first group of experiments. 
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Road 10.59 0.06 0.47 0.19 0.39 0.08 0.75 2.49 -- 0.01 -- 0.12 0.21 -- 68.73 

Isl. V 0.10 0.01 -- -- -- -- 0.01 -- -- -- -- -- -- -- 4.32 

Sidew. 1.28 -- 0.35 0.13 0.32 0.05 0.21 0.69 -- -- -- 0.09 0.04 -- 11.00 

Build. 0.38 -- 0.04 13.02 0.48 0.06 0.18 1.30 -- -- -- 0.16 0.18 0.23 81.17 

Grass 0.30 -- 0.14 0.57 14.48 1.03 0.16 0.94 0.05 0.40 0.06 4.61 0.07 -- 63.51 

Agr. 0.04 -- 0.17 0.25 0.74 7.03  0.85 0.25 0.04 0.01 3.18 0.05 -- 55.70 

Water 0.08 -- -- 0.04 0.02 -- 0.21 0.06 -- -- -- -- 0.02 -- 49.47 

Sealed 3.67  0.52 0.81 1.08 0.28 0.40 3.19 -- -- 0.01 0.33 0.23 0.01 30.22 

Isl. A 0.01 -- -- -- 0.01 -- -- -- 0.00 -- -- -- -- -- -- 

Beach 0.01 -- -- -- -- -- -- 0.09 -- 0.00 0.01 -- -- -- -- 

Railw. 0.05 -- 0.09 -- 0.10 0.05 -- 0.04 -- -- 0.01 0.04 -- -- 2.64 

Tree 0.21 -- 0.01 0.12 2.57 0.14 0.01 0.10 -- -- -- 14.29 0.01 -- 81.80 

Car 0.05 -- 0.02 0.02 0.03 0.01 -- 0.19 -- -- -- 0.01 0.33 -- 49.96 

Bridge 0.08 -- -- 0.09 -- -- -- 0.04 -- -- -- -- 0.02 0.00 -- 

Corr. 62.84 6.74 19.10 85.45 71.54 80.51 11.07 31.98 -- -- 10.60 62.59 28.14 --  

Table 1: Confusion matrix for the experiment using 14 classes and the car confidence feature. All values are given in [%]. Overall 

accuracy: 63.50%. Abbreviations: Ref.: Reference; Isl. V: traffic island with vegetation; Sidew.: sidewalk; Build.: building;  

Agr.: agricultural; Isl. A: traffic island with asphalt; Railw.: railway; Comp. / Corr.: Completeness / Correctness. 
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Road 10.25 0.08 0.50 0.18 0.35 0.12 0.78 2.56 -- 0.01 -- 0.12 0.43 0.02 66.56 

Isl. V 0.10 0.01 -- -- -- -- 0.01 -- -- -- -- -- -- -- 5.57 

Sidew. 1.22 -- 0.39 0.13 0.30 0.08 0.21 0.65 -- -- -- 0.10 0.10 -- 12.22 

Build. 0.23 -- 0.02 13.18 0.43 0.09 0.17 1.20 -- -- -- 0.17 0.35 0.20 82.18 

Grass 0.14 -- 0.12 0.56 14.06 1.41 0.15 0.90 0.04 0.40 0.04 4.84 0.13 -- 61.68 

Agr. 0.03 -- 0.15 0.25 0.68 7.21  0.84 0.16 -- 0.01 3.19 0.09 -- 57.11 

Water 0.07 -- -- 0.04 0.02 -- 0.21 0.05 -- -- -- -- 0.03 -- 49.39 

Sealed 3.47 0.01 0.55 0.80 0.97 0.43 0.40 3.10 -- -- 0.01 0.34 0.46 0.01 29.36 

Isl. A 0.01 -- -- -- 0.01 -- -- -- 0.00 -- -- -- -- -- -- 

Beach -- -- -- -- -- -- -- 0.10 -- 0.00 0.01 -- -- -- -- 

Railw. 0.04 -- 0.09 -- 0.09 0.07 -- 0.04 -- -- 0.01 0.04 -- -- 2.80 

Tree 0.01 -- 0.02 0.12 2.38 0.26 0.01 0.09 -- -- -- 14.57 0.02 -- 83.43 

Car 0.03 -- 0.02 0.02 0.03 0.02 -- 0.19 -- -- -- 0.01 0.33 -- 50.02 

Bridge 0.08 -- -- 0.09 -- -- -- 0.03 -- -- -- -- 0.03 0.00 -- 

Corr. 65.37 6.92 20.85 85.78 72.75 74.45 11.02 31.80 -- -- 13.33 62.29 16.75 --  

Table 2: Confusion matrix for the experiment using 14 classes without the car confidence feature. All values are given in [%]. 

Overall accuracy: 63.32%. Abbreviations: see caption of Table 1.  

5. CONCLUSION 

In this paper, a method for the classification of crossroads using 

MRF was proposed. It considered 3D information in the form of 

a DSM generated from multiple overlapping aerial images, as 

well as a car confidence feature to avoid problems with 

occlusions of the road surface by cars. Distinguishing 14 classes 

relevant in the context of crossroads, an overall accuracy of 

about 63.5% could be achieved. The main error sources were 

the confusion of object classes that are only distinguished by 

their relative alignment, but not by their appearance in the data 

(road, sidewalk, sealed) and errors in the DSM generation 

process. After merging the classes that are most similar in 

appearance, the overall accuracy was increased to 74.8%. In the 

future we want to improve our method by integrating more 

expressive features, e.g. HOG features or features related to car 

trajectories, and we will also integrate multi-scale features. 

Furthermore, we want to build a more sophisticated model of 

context based on Conditional Random Fields (Kumar & Hebert, 

2006), also using improved models for the association 

potentials linking the class labels to the data. Finally, we will 

investigate whether the results can be improved by using image 

segments as the nodes of the graphical model.  
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Asph. 25.14 1.31 1.76 0.48 0.01 0.53 0.44 0.04 84.62 

Build. 1.80 13.14 0.48 0.08 -- 0.16 0.24 0.13 81.93 

Grass 1.54 0.63 14.65 1.21 0.41 4.65 0.09 -- 63.21 

Agr. 0.98 0.31 0.75 7.32 -- 3.23 0.03 -- 58.02 

Beach 0.10 -- -- -- 0.00 -- -- -- -- 

Tree 0.31 0.12 2.57 0.18 -- 14.28 0.01 -- 81.73 

Car 0.26 0.02 0.03 0.01 -- 0.01 0.31 -- 47.94 

Bridge 0.14 0.06 -- -- -- -- 0.02 0.00 -- 

Corr. 83.02 84.24 72.37 78.94 -- 62.48 27.22 --  

Table 3: Confusion matrix for the experiment using 8 classes 

and the car confidence feature. All values are given in 

[%]. Overall accuracy: 74.84%. Asph: asphalt. 
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Asph. 24.63 1.28 1.60 0.72 0.01 0.56 0.88 0.03 82.90 

Build. 1.53 13.26 0.44 0.11 -- 0.16 0.40 0.13 82.70 

Grass 1.30 0.62 14.21 1.60 0.41 4.87 0.17 -- 61.30 

Agr. 0.96 0.27 0.68 7.38  3.25 0.07 -- 58.53 

Beach 0.10 -- -- -- 0.00 -- -- -- -- 

Tree 0.10 0.12 2.36 0.27 -- 14.58 0.02 -- 83.48 

Car 0.25 0.02 0.03 0.02 -- 0.01 0.32 -- 49.33 

Bridge 0.12 0.07 -- -- -- -- 0.03 0.00 -- 

Corr. 84.95 84.79 73.49 72.99 -- 62.24 17.01 --  

Table 4: Confusion matrix for the experiment using 8 classes 

without car confidence feature. All values are given in 

[%]. Overall accuracy: 74.39%. Asph: asphalt. 
 

   
Figure 2:  Classification results. Left: original orthophoto; 

centre: ground truth superimposed to the intensity 

mage; right: results achieved with 14 classes and the 

car feature superimposed to the intensity image.  
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