

Real Time Disparity Estimation

with Variational Methods

Sergey Kosov, Thorsten Thormählen, Hans-Peter Seidel

Overview

I. Introduction

- Disparity Estimation
- Methods Overview

II. Real-Time Variational Approach

- Euler-Lagrange Equation
- Full Multi Grid
- Multi Level Adaptation Technique

III. Results

- Speed / Quality Discussion
- Future Work

Introduction

• **Disparity field** is a vector field of pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer (eyes or cameras) and the scene.

Disparity Field

>> near 16px

Optical Flow Field

Methods Overview

Ours: Variational Method

Belief Propagation Method

Infection Method

Graph Cuts Method

Constancy assumption on the grey value:

$$I_1(x+z(x, y), y) = I_2(x, y)$$

Constancy assumption on the grey value:

$$I_1(x + z(x, y), y) = I_2(x, y)$$

Data term:

Arg min
$$||I_1(x+z(x,y),y)-I_2(x,y)||_2$$

Constancy assumption on the grey value:

$$I_1(x + z(x, y), y) = I_2(x, y)$$

Data term:

Arg min
$$||I_1(x+z(x,y),y)-I_2(x,y)||_2$$

Energy Functional:

$$E(z(x,y)) = \iint_{\Omega} ||I_1(x+z(x,y),y) - I_2(x,y)||^2 dS$$

Constancy assumption on the grey value:

$$I_1(x+z(x, y), y) = I_2(x, y)$$

Data term:

Arg min
$$||I_1(x+z(x,y),y)-I_2(x,y)||_2$$

Energy Functional:

$$E(z(x, y)) = \iint_{\Omega} ||I_1(x + z(x, y), y) - I_2(x, y)||^2 dS$$

Preserving discontinuities:

$$E(z(x, y)) = \iiint |I_1(x + z(x, y), y) - I_2(x, y)|^2 + \varphi \cdot \Psi(|\nabla z(x, y)|^2) dS$$

• Where $\Psi(s^2) = \lambda \sqrt{\lambda^2 + s^2} - \lambda^2$ is non-linear regularization function

- The mathematicians *Leonard Euler* (1707-1783) and *Joseph-Louis Lagrange* (1736-1813) belong to the founders of the calculus of variations.
- Steady state of a function: f = f(x)
- Satisfies the equation: $f_x(x) = 0$
 - where $f_x(x) \equiv \frac{df(x)}{dx}$
- Solution: x = a

- Steady state of a functional $E(f(x)) = \int_{1}^{x} F(x, f(x), f_{x}(x)) dx$
- Satisfies the equation:

$$\frac{\partial F}{\partial f} - \frac{d}{dx} \frac{\partial F}{\partial f_x} = 0$$

Solution:

$$f(x) = \varphi(x)$$

• A smooth function z(x, y) that minimizes the energy functional:

$$E(z(x,y)) = \iint_{\Omega} F\left(x, y, z(x,y), \frac{\partial z(x,y)}{\partial x}, \frac{\partial z(x,y)}{\partial y}\right) dS$$

Satisfies necessary the Euler-Lagrange equation:

$$\frac{\partial F}{\partial z} - \frac{d}{dx} \frac{\partial F}{\partial z_x} - \frac{d}{dy} \frac{\partial F}{\partial z_y} = 0$$

• where
$$z_u = \frac{\partial z}{\partial u}$$
 and $z_v = \frac{\partial z}{\partial v}$.

Multi Grid

• In our case we can write the Euler-Lagrange equation:

$$I_{1x}(x+z,y)\cdot (I_1(x+z,y)-I_2(x,y))-\varphi \cdot div(\Psi'(\nabla z|^2)\nabla z)=0$$

Multi Grid

• In our case we can write the Euler-Lagrange equation:

$$I_{1x}(x+z,y)\cdot (I_1(x+z,y)-I_2(x,y))-\varphi \cdot div(\Psi'(\nabla z|^2)\nabla z)=0$$

Which could be rewritten in form:

$$A_1 z + A_2 - \varphi \cdot \Lambda(z) = 0$$

- where A_i are linear operators,
- and $\Lambda(z)$ is a *non-linear* deferential operator.

Multi Grid

• In our case we can write the Euler-Lagrange equation:

$$I_{1x}(x+z,y)\cdot (I_1(x+z,y)-I_2(x,y))-\varphi \cdot div(\Psi'(\nabla z)^2)\nabla z)=0$$

Which could be rewritten in form:

$$A_1 z + A_2 - \varphi \cdot \Lambda(z) = 0$$

- where A_i are linear operators,
- and $\Lambda(z)$ is a *non-linear* differential operator.
- We reformulate this non-linear equation system:

$$L(x) = f$$

- where x denotes vector $(u^T, v^T)^T$,
- *L* is a *non-linear* operator,
- *f* stands for the right hand side.

Full Approximation Scheme

- Multigrid approach was offered by R. Fedorenko in 1961
- Very effective for solving elliptic and parabolic PDE systems
- Uses a set of grids with different step sizes:

$$G(h) = (\Delta h, \Delta h)$$

$$G(H^i) = G(2^i h)$$

with approximation to a grid

$$L^h x^h = f^h$$

Full Approximation Scheme

- First way
 - Solve problem on a given grid by calling Multigrid on a coarse approximation to get a good guess to refine
- Second way
 - Think of error as a sum of sine curves of different frequencies
 - Same idea as FFT solution, but not explicit in algorithm
 - Each call to Multigrid responsible for suppressing coefficients of sine curves of the lower half of the frequencies in the error

Full Multigrid

H

Multilevel Adaptation Technique

- Adaptive grids
 - Increased computational savings over a static grid approach
 - Effective multi grid and adaptive grid combination
 - Easy and effective parallelizable
- Irregular grids
 - Concentrate nodes near to a local peculiarity
 - Simple combination of two grid levels

Results

Results

 Excerpt from the evaluation table generated by the Middlebury stereo evaluation webpage (error threshold = 2 pixels).

Algorithm	Tsukuba			Venus			Teddy			Cones			Average percent
	nonocc	all	disc	nonocc	all	disc	nonocc	all	disc	nonocc	all	disc	of bad pixels
DoubleBP	0,83	1,24	4,49	0,10	0,35	1,46	1,41	4,13	4,73	1,71	7,20	5,16	2,72
CoopRegion	0,77	1,00	4,14	0,11	0,18	1,53	2,14	3,41	6,61	2,10	5,95	6,24	2,80
Ours: RealTimeVar	1,33	3,13	6,94	0,27	1,07	3,16	1,30	2,30	3,87	2,31	3,43	6,90	3,00
MultiResGC	0,67	1,05	3,64	0,22	0,46	2,97	4,20	7,13	11,6	3,22	8,80	8,07	4,30
RealTimeBP	1,25	3,04	6,66	0,63	1,53	7,68	5,68	8,27	10,2	2,90	9,11	8,27	5,43
RealTimeGPU	1,34	3,27	7,17	1,02	1,90	12,4	3,90	8,65	10,4	4,37	10,8	12,3	6,46
Infection	6,34	7,81	22,8	2,70	3,66	26,0	12,8	18,3	33,5	10,7	16,6	30,1	15,9

Future Work

• Main contributions so far:

- The most accurate disparity estimation method among realtime methods (according to Middlebury University web-site)
- Effective combination of multigrids with grid adaptation techniques
- Multigrid powered by null-cycles

• Future work:

- From the disparity estimation to the pure optical flow reconstruction
- User recognition and authentication with stereo web-cams
- Use your body as an input device in interactive games
- Robots with stereo cameras as eyes

The end

Thank you for your attention

Ready to answer your questions ©