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Abstract

The labeling of Environmental Microorganisms (EM) which help decomposing

pollutants, plays a fundamental role for establishing sustainable ecosystem. We

propose an environmental microorganism classification engine that can auto-

matically analyze microscopic images using Conditional Random Fields (CRF)

and Deep Convolutional Neural Networks (DCNN). First, to effectively repre-

sent scarce training images, a DCNN pre-trained for image classification using

a large amount of data is re-purposed to our feature extractor that distils pixel-

level features in microscopic images. In addition, pixel-level classification results

by such features can be refined using global features that describe the whole im-

age in toto. Finally, our CRF model localizes and classifies EMs by considering

the spatial relations among DCNN-based features, and their relations to global

features. The experimental results have shown 94.2% of overall segmentation

accuracy and up to 91.4% mean average precision of the results.

Keywords: Environmental Microorganism; Conditional Random Fields;

Global Feature Extraction; Image Classification; Image Segmentation

1. Introduction

Recent decades, due to industrialization, we can observe a growing number

of pollutants like waste water entering the human environment. This increases
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the risks of serious diseases, such as cancer. Instead of using chemicals to elim-

inate such pollutants, a more harmless approach would be taking advantage5

of the natural consumption of Environmental Microorganisms (EM) [1]. EMs

are microscopic organisms living in natural and artificial environments (e.g.,

forests and farmlands), which are useful for cleaning environments. For exam-

ple, Actinophrys can digest the organic waste in sludge and increase the quality

of fresh water, whereas Rotifera can decompose rubbish in water and reduce the10

level of eutrophication. To achieve the environmental treatments, EM classifi-

cation is necessary.

There are two traditional approaches for EM classification. The first is

the molecular biological method which distinguishes an EM by its DNA or

RNA [2, 3]. This approach requires a long time and an expensive equipment.15

The second approach adopts a morphological approach, in which an EM is

observed under a microscope and classified manually based on its shape [1].

This approach requires huge manual effort.

In this paper, we develop a system which conducts EM classification by di-

rectly analyzing microscopic images. We consider EM classification as a pixel-20

based labeling and address the following three problems: First, one important

factor for this is the representation of each pixel, that is, feature. A good fea-

ture makes it easier to assign the appropriate label to the pixel. With respect

to this, we focus on a Deep Convolutional Neural Network (DCNN) considering

its impressive performance in many computer vision problems, including clas-25

sification, segmentation and captioning of images/videos, object detection and

action recognition [4]. However, environmental investigations are always oper-

ated in outdoor environments, where conditions like temperature and salinity

are changing continuously. Because EMs are very sensitive to these conditions,

their quantity is easily influenced. So, we face with a small training dataset30

problem [5], where it is difficult to collect sufficient EM images for training a

DCNN with numerous parameters to be optimised.

Our solution for this is inspired by the “pre-training and fine-tuning” ap-

proach that pre-trains a DCNN on a large auxiliary dataset, followed by domain-
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specific fine-tuning on a small dataset [6, 7]. However, DCNNs usually used in35

this approach target at extracting image-level or region-level features, and can-

not be used for our pixel-level feature extraction. Hence, we re-purpose a DCNN

pre-trained on a large image dataset by replacing fully connected layers with

convolutional layers with upsampled (dilated) filters [8]. Then, EM images are

used to fine-tune this DCNN to produce dense pixel-level feature maps for an40

image. Here, each pixel is represented as a feature vector consisting of values

in these maps. It should be noted that the feature implicitly includes spatial

relations between the pixel and surrounding ones, because field of views of units

in the DCNN are gradually enlarged by passing layers. But, on top of such

pixel-level features, we implement the two extensions described below in order45

to explicitly handle spatial characteristics of EMs.

Second, global features are useful in applications where a rough segmentation

of the object of interest is available. Whereas pixel-level features are extracted

in a ‘bottom-up’ fashion that only exploits physical pixel values in an image, we

utilise global features as a ‘top-down’ prior knowledge about contours, shapes50

and textures of EMs. Global features provide such different kinds of information

and we expect classifiers that use both of them will outperform classifiers based

on pixel-level features only.

Third, the majority of EM samples are obtained from the complex environ-

ments, where a large amount of impurities like rubbish is present (see Fig. 5).55

This kind of noise degrades the performance of EM classification, leading to a

noisy image problem. To overcome this, we apply Conditional Random Fields

(CRF) [9] for pixel-based labeling. CRFs belong to a class of probabilistic mod-

els for including context in the classification process by considering the statistical

dependencies between the class labels at neighboring image sites. Additionally60

CRFs offer great flexibility in modeling dependencies between random variables,

providing a principled way to bind random variables not only for handling spatial

relations among pixel-level features, but also for integrating them with global

features.

To jointly solve the problems above, we propose an EM classification model65
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which incorporates pixel-level features and auxiliary global features into a CRF

framework. As shown in Fig. 1, first we re-purpose one of the most successful

DCNNs, called VGG-16 [10], which has been trained on 1.3 million images

in ImageNet dataset [11], and fine-tune it using training EM images. For an

image, feature maps output by the second last layer of the re-purposed VGG-1670

are used to generate pixel-level features. We also extract global features from

the image. Then extracted features together with the ground truth data are

used to train Random Forest (RF) [12] classifiers by analyzing pixel-level and

global features in training images. According to [13], RF are among the most

accurate individual classification techniques. The trained RF classifiers are used75

as the unary potentials by the CRF model. Finally, together with the pairwise

potentials, the CRF model is applied to localize and label into the classes the

objects of interest in the test EM images.

There are three main contributions of our work: First, we develop a full-

automatic EM classification system using a CRF framework. Second, we re-80

purpose a pre-trained DCNN to extract pixel-level features by handling the

small dataset problem. Third, we significantly improve the classification rate

by combining global and pixel-level features.

Figure 1: An overview of our CRF-based EM classification and segmentation framework.
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2. Related Work

Because microorganisms are widely explored in many production and re-85

search activities, they are grouped based on their application domains [14],

including agricultural microorganisms, food microorganisms, EMs, etc. In this

section, selected works about microorganism classification using image analysis

techniques are summarized. Please refer to [15, 16] for more detailed survey of

each selected work.90

Tab. 1 shows a comparison among features used in existing microorganism

classification methods. First, there are two basic categories of feature extrac-

tion techniques: The one is “hand-crafted features”, and the other is “feature

learning” [17]. The former are manually designed based on prior knowledge

and investigation, including global shape, local shape (including SIFT), tex-95

ture, color, etc. as shown in the left side of Tab. 1. However, hand-crafted

features are insufficient for representing diverse appearances of EMs, because

all of those appearances cannot be assumed in advance. Compared to this,

feature learning aims to extract useful features from a large amount of images.

For example, Bag of Visual Words (BoVW) performs clustering of numerous100

local features (e.g., SIFT) to find statistically characteristic ones called visual

words [18]. Sparse Coding (SC) analyses a large number of image patches to

learn a set of bases, each of which is a feature expressing a characteristic patch

pattern [19]. Deep learning builds a DCNN representing feature hierarchies with

higher-level features formed by the composition of lower-level ones [20]. In this105

paper, we adopt a deep learning approach because of its superior expressive

power over BoVW and SC [17, 21]. The combination of features at each layer

can define the exponential order of higher-level features, and this order is fur-

ther exponentially increased by passing through layers. In addition, a DCNN

is a model that mimics the process of the visual cortex in a human brain. The110

effectiveness of features extracted from such a biologically inspired model has

been validated in many works [22].

In [20], deep learning has been used for EM classification and segmentation
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Hand-crafted features Feature learning

Global shape [23, 24, 25, 26] BoVW [18]

Local shape [27, 15] SC [19]

Texture [28, 29, 30] Deep learning [20]

Color [31, 32, 33]

Table 1: Categorization of microorganism classification methods in terms of features.

tasks. First, a Convolutional Deep Belief Network (CDBN) and an SVM clas-

sifier are used to segment possible object regions, then a DCNN consisting of115

six layers is applied to predict the class of each possible region. In contrast,

we adopt deep learning to jointly address EM classification and segmentation

problems in a CRF framework. Because of this single integrated framework,

our method is more compositive and effective. Furthermore, in [20], they train

the DCNN for the EM classification task from scratch, so a data augmentation120

approach is applied to solve the small dataset problem. In contrast, we transfer

an existing pre-trained DCNN to manage the small dataset problem.

Recently researchers have proposed several DCNN-based image segmenta-

tion approaches that produce dense (high resolution) feature maps and can be

extended to our pixel-level feature extraction [8, 34, 35]. One approach for ob-125

taining dense feature maps is to upsample feature maps using a deconvolution

layer [35] or using a decoder based on the downsampling record that represents

value locations selected by a max-pooling layer [34]. However, this requires to

learn filter weights used in the deconvolution or decoder, and causes a signif-

icant increase of parameters. Hence, upsampling feature maps is not suitable130

for EM classification involving the small dataset problem. Thus, we adopt an-

other approach that upsamples ‘filters’ by inserting zeros (holes) between filter

weights [8]. By utilizing these upsampled filters with the stride of size 1, the res-

olution of feature maps can be efficiently maintained by suppressing the increase

of parameters.135

Furthermore, microorganism classification algorithms are compared in Tab. 2.
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We find that the most popular classifier is Support Vector Machines (SVM).

Then, other classifiers, k-Nearest Neighbors (k-NN), Artificial Neural Network

(ANN), Random Forest (RF) and Convolutional Neural Network (CNN), are

also used. Besides these general classification methods, many algorithms are140

specially designed to solve the microorganism classification problem. However,

it is difficult to represent the spatial relations among local image regions (pix-

els) using the classifiers described above. In contrast, we use CRF to explicitly

model such spatial relations as well as the relations between pixel-level and

global features.145

Classifier Related work Classifier Related work

k-NN [28, 36] CNN [20]

ANN [33, 37] Other methods [38, 39, 30]

SVM [40, 41, 27] CRF Our method

RF [31]

Table 2: Overview of microorganism classification methods grouped by utilized classifiers.

Nearest Neighbor (NN), k-nearest Neighbor (k-NN), Artificial Neural Network (ANN), Sup-

port Vector Machine (SVM), Random Forest (RF), Convolutional Neural Network (CNN).

Stochastic approaches based on graphical models such as Conditional Ran-

dom Fields [9] are popular in computer vision and pattern recognition be-

cause of a great flexibility in modeling dependencies between random variables.

Particularly, pairwise CRFs have been applied successfully to many labeling

tasks [42, 43, 44, 45]. Particularly, the CRF model in [46] can handle a variety150

of dependencies for all possible pairs of random variables (pixels). Although the

exact probabilistic inference of such a model is infeasible, the researchers use

a mean field approximation and high-dimensional filtering to make the infer-

ence sublinear in the number of pairwise dependencies. Also, instead of popular

l2 norm, the CRF model in [47] leverages is l1 norm to regularise model pa-155

rameters, so as to enhance the robustness to outliers and the effectiveness for

high-dimensional features. Among existing CRF models, we focus on the one

that combines local and global features [48]. In our CRF, the former characterise
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EMs in a bottom-up fashion, while the latter reflect top-down prior knowledge

about their overall characteristics. The usefulness of CRFs for incorporating160

local and global random variables within a solid graphical model can scarcely

be overestimated. Moreover, to our best knowledge, CRF model has not been

applied to the problem of microorganism classification yet.

3. Method

We start this section with a short overview of our method. First of all, we165

describe an individual observation y ∈ Y with a feature vector f(y) of distinct,

measurable properties of the observation. Within this work, we consider two

types of observations: local (y) - a single pixel and global (y)- the whole image

in toto. In order to describe the local observations (i.e., pixel-level features),

we use feature maps that are produced by the second last layer of a DCNN,170

which is pre-trained on large-scale image data and fine-tuned to EM images.

Sec. 3.1 presents our pixel-level feature extraction approach by explaining the

construction of the re-purposed DCNN.

We chose the nodes of the graphical model to correspond to single pixels and

the neighborhood of a node to consist of four direct neighbors in the data grid;175

the neighboring nodes are connected with edges. Thus, our graphical model

comprises the number of nodes equal to the number of pixels in an EM image.

Every node is initialized with the node potentials, trained with RF on the pixel-

level features. The graph edges are initialized with the interaction (pairwise)

potentials, obtained using the contrast-sensitive Potts model [49].180

In order to incorporate the global features to our model, we add one more ex-

tra graph node, initialized with the potentials, trained with RF on the global fea-

tures. This ‘global’ node is connected with all other ‘local’ nodes via graph edges,

initialized with the interaction potentials, represented by data-independent Potts

model. We describe the global features and our CRF model with its potential185

functions in more detail in Sec. 3.2 and 3.3, respectively.
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3.1. Pixel-level Feature Extraction by Re-purposing a DCNN

Fig. 2 illustrates an overview of our pixel-level feature extractor that is an

extension of the DCNN-based image segmentation approach, called DeepLab,

introduced in [8]. First, a pre-trained DCNN VGG-16 for image classification190

is adapted to a segmentation model DeepLab-VGG-16 by re-using/modifying

the bottom and middle layers, as depicted by the dashed arrows in Fig. 2. In

addition, three fully connected layers at the top of VGG-16 are replaced with

one average pooling, three convolution and one (bilinear) interpolation layers.

The right side of Fig. 2 provides a more detailed view of these three convolution195

layers. While the bottom one computes region-wise convolution in 512 feature

maps obtained at the average pooling layer, the other two layers perform 1× 1

pixel-wise convolution to enhance the non-linearity of pixel classification. Fi-

nally, letting C be the number of classes assigned to pixels, C feature maps at

the top convolution layer are resized to the original image size using the interpo-200

lation layer. These resized feature maps represent a dense segmentation result

where every pixel is associated with C scores, expressing how likely the pixel

belongs to each class. We consider that, rather than pixel-wise convolution at

the top layer, a better segmentation could be accomplished if 1024 feature maps

at the penultimate layer would be resized to the original image size and used as205

pixel-level features for a more sophisticated classifier (e.g., CRF), as shown in

the rightmost part of Fig. 2. This feature extraction is detailed below.

VGG-16 is a DCNN consisting of 16 weight layers (i.e., convolution and

fully connected layers) [10]. While a depth is one very important factor for

accurate recognition, a deep architecture involves a huge number of parameters,210

and its appropriate optimisation is difficult even using large-scale training data.

Compared to this, VGG-16 adopts a very small field of view (3 × 3) for each

convolution filter (see Fig. 2), so that its deep architecture contains a much

smaller number of parameters. This property of VGG-16 is suitable for the small

training dataset problem in EM classification. Actually VGG-16 trained on 1.3215

million images in ImageNet dataset [11] demonstrated excellent performances

in many tasks [10, 8, 35, 50].
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- Avr. pool (<Stride>)
- FC (<# of dimensions>)
- Interp. (<Zoom factor>)

Notations

Conv. (1x1), C

Figure 2: An overview of our pixel-level feature extraction where the pre-trained VGG-16 is

re-purposed to DeepLab-VGG-16, and feature maps at the penultimate convolution layer are

drawn out as pixel-level features.

VGG-16 is re-purposed to DeepLab-VGG-16 that aims to effectively main-

tain the spatial resolution of feature maps. In VGG-16, five max-pooling layers

with stride 2 reduce the resolution of feature maps by a factor of 32 compared

to the original image (see Fig. 2), so a lot of detailed information is lost. To take

a good trade-off between the accuracy and efficiency, in DeepLab-VGG-16, the

stride of the top two max pooling layers is set to 1, and feature maps with one-

eighth of the original resolution are processed. In addition, the following atrous

convolution is utilised to efficiently widen the field of view of a convolution filter:

fl(x, y) =

k∑
i=−k

k∑
j=−k

fl−1(x+ r · i, y + r · j) w(i, j). (1)
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For simplicity, we assume that the lth and (l − 1)th layers have single feature

maps fl and fl−1, respectively (it is straightforward to extend this to multiple

feature maps). In Eq. 1, a convolution filter of size (2k + 1)2 is represented by220

w(i, j). But, based on the ‘rate’ parameter r, the convolution is done for every

r values in fl−1 as depicted by the set of small dots in the right side of Fig. 2.

In other words, the filter is dilated by introducing zeros (i.e., holes) for values

in fl−1 that are excluded from the convolution. This way, the field of view of

the convolution filter is enlarged without requiring any extra parameters.225

We train DeepLab-VGG-16 using 200 training EM images containing C = 21

classes (including the background class). Then, each EM image is fed into the

trained DeepLab-VGG-16, and 1024 feature maps at the penultimate convolu-

tion layer are extracted and bilinearly interpolated to the original image size.

As a result, each pixel is now represented by a 1024-dimensional feature vector.230

Fig. 3 visualises pixel-level features extracted for three example images in a

very simple way, where each pixel is characterised by the index of the dimension

having the highest value among 1024 dimensions. Such indexes are then scaled

and visualised as an image. As can be seen from Fig. 3, even with this simple

visualisation, the region of each EM is outlined, which implies the effective-235

ness of extracted pixel-level features. It is worth noting that we tested to train

DeepLab-VGG-16 using natural images in PASCAL VOC 2012 dataset [51], but

pixel-level features extracted from it were not so useful. It is considered that a

general-purpose feature extractor trained on natural images is not suitable for a

special type of EM images. Finally, it could be possible to extract further useful240

features by re-purposing a more advanced DCNN than VGG-16 like ResNet [52].

We leave this as a future work because its re-purposing needs much RAM and

cannot be performed on our current GPU with 8GB RAM.

Figure 3: Simple visualisation of pixel-level features for three example images.
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3.2. Global Features

We use 7 global features: three shape-driven features perimeter, area and

compactness (perimeter squared over area); two Hough-transform-driven fea-

tures number of lines and number of circles; and also we make use of variance

and opacity. In order to extract the shape-driven features we first separate the

EM from the background by applying a simple global bimodal segmentation.

We use expectation maximization to fit a mixture of two Gaussian functions

to the histogram of gray values for a given image [53]. The Bayesian decision

boundary defines the cut point between the foreground and background. After

that, morphological hole filling [54] is used to capture the stray bright pixels

inside the object. Next, we apply a Hough transform [55] to detect lines and

circles in the original images and use the number of corresponding detections as

two more features. Finally, we calculate the variance of image gray-values, and

EM opacity that is evaluated as

1

m

m∑
i=1

(1−∆E
i ) · |µ− yi|, (2)

where ∆E
i is the normalized Euclidean distance between a spacial position of245

pixel yi and the image center and µ is the image mean value.

3.3. Conditional Random Fields

We address the general problem of learning a mapping from input observa-

tions y ∈ Y to discrete response variables x ∈ X, based on a training sample of

input-output pairs (x1, y1), (x2, y2), . . . ,∈ X×Y drawn from some fixed but un-

known probability distribution. We assume that an image y consists of m image

sites (pixels or segments) i ∈ V with observed data yi, i.e., y = (y1, y2, . . . , ym)>,

where V is the array of all sites, corresponding to the nodes of an associated

undirected graph G = (V, E), whose edges E model interactions between adja-

cent sites. Each site i is also associated with a discrete class variable xi ∈ X

which takes values from a given set of classes L. According to [9] conditional

random fields are probabilistic models for computing the posterior probabil-

ity p(x |y) of a possible output x ∈ X
m given the input y ∈ Y

m. Restricting
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ourselves to pairwise interactions, CRF can be modeled by:

p(x |y) =
1

Z

∏
i∈V

ϕi(xi; y)
∏

(i,j)∈E

ψij(xi, xj ; y), (3)

where ϕi are the unary potentials which associate the observations with the label

variables at site i; ψij are the pairwise potentials which model the interaction of

the label variables at two adjacent sites i and j; and Z is a normalizer (partition

function) defined by:

Z =
∑
x,y

∏
i∈V

ϕi(xi; y)
∏

(i,j)∈E

ψij(xi, xj ; y). (4)

Finally, we can formulate the problem of image classification as finding the

maximum a posteriori labelings x̃ = arg maxx p(x |y).

3.3.1. Unary Potential Functions250

The unary potentials ϕi(xi; y) in Eq. 3 are related to the probability of a

label xi taking a value c ∈ L given the data y by ϕi(xi; y) ∝ p(xi=c | f i(y)) [56],

where the image data are represented by site-wise feature vectors f i(y) that may

depend on all the data y. The local observation describes a pixel belonging to

one of EM classes or to the background. For f i(y) we use 1024-dimensional pixel-

level features wi, obtained based on feature maps at the penultimate convolution

layer of DeepLab-VGG-16 in Sec. 3.1:

ϕi(xi; y) = ϕi(xi; wi). (5)

In order to describe the global observation, we use a feature vector fg(y)

consisting of seven global features described in Sec. 3.2. We add to the graphical

model one special graph node xg with its own unary potential

ϕg(xg; fg(y)). (6)

Since the current work is aiming to distinguish between EMs, the global

observation only describes an EM and no background. Thus, the potential

p(xg = background | fg(y)) = 0. In order to conform the global observations to
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the local ones, where the potentials for the background class are non-zero1, we

set the potential p(xg=background | fg(y)) = maxc∈L p(xg=c | fg(y)).255

For the both kinds of the unary potentials we use a Random Forest (RF) [12].

Our RF consists of NT decision trees that are generated in the training phase.

In the classification, each tree casts a vote for the most likely class. If the

number of votes for a class c is Nc, the probability underlying our definition of

the association potentials is p(xi=c | f i(y)) = Nc/NT .260

3.3.2. Pairwise Potential Functions

The pairwise potentials ψij(xi, xj ; y) in Eq. 3 describe how likely the pair

of neighboring sites i and j is to take the labels (xi, xj) = (c, c′) given the data:

ψij(xi, xj ; y) = p(xi=c;xj=c
′ | f i(y), f j(y)) [56]. Since we had introduced the

additional global graph node xg, we make use of two different types of pairwise265

potentials: The first corresponds to the edges connecting the global node xg

with all other graph nodes xi, i ∈ V, and the second corresponds to the edges

connecting every node xi with its neighbors xj in the data grid.

In order to model the first type of pairwise potentials ψ(xg, xi; y) we use

the Potts model [49] that guarantees the conformity between global and local

graph nodes i.e.,

ψ(xg, xi; y) ≡ ψ(xg, xi) ∝ p(xi=c, xj=c′) =

 θ if c = c′

1 otherwise,
(7)

where parameter θ modulates the degree to which the interaction potential

favors identical classes between the global node and all local image sites.270

For modeling the second type of pairwise potentials ψij(xi, xi; wi,wj) we use

the contrast-sensitive Potts model [57], which can be considered as an extension

of the Potts model in Eq. 7. It takes into account the difference (contrast)

between observations on adjacent sites. This difference is expressed in terms of

Euclidean distance between corresponding feature vectors [58]:

∆E
ij = E(wi,wj). (8)

1In practical applications, the background class may cover up to 90% of EM image area.
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Having defined the difference measure ∆E
ij , that is supposed to be high on

segments’ borders and low at homogenous regions of classifying images, we add

to the Potts model in Eq. 7 a contrast-sensitive regularization function, which

ought to penalize the smoothness term on regions, corresponding to abrupt

changes of observed data:

ψij(xi, xj ; wi,wj) ∝ p(xi=c, xj=c′ |∆ij) =

 θ · e−ρ·∆
2
ij if c = c′

1 otherwise
(9)

where parameter ρ modulates the contrast-sensitive term.

The contrast-sensitive Potts model replicates the original Potts model be-

havior if the feature vectors wi, wj are identical, but large differences between

the features will reduce the impact of this smoothness assumption and make a

class change between neighboring image sites more likely. This results in smooth275

label maps covering homogenous image regions, while preserving edges, where

the objects’ borders are more probable.

3.4. Local-Global CRF

Having Eq. 5, 6, 7 and 9 we can rewrite Eq. 3 in form:

p(x |y) =
1

Z
ϕg(xg; fg(y))

∏
i∈V

ϕi(xi; wi)·

ψ(xg, xi)
∏

(i,j)∈E

ψij(xi, xj ; wi,wj).
(10)

The structure of our graphical model is depicted in Fig. 4. The first unary

potential ϕg(xg; fg(y)) in Eq. 10 corresponds to the global node xg (shown with280

magenta color in Fig. 4) and provides the CRF model with a single prediction

about the EM depicted at the image y. The second term ϕi(xi; wi) corresponds

to the ‘local’ nodes xi (red nodes in Fig. 4), providing per-pixel predictions for

every image site i ∈ V. This term corresponds to the unary potentials in Eq. 3.

The pairwise potentials ψ(xg, xi) correspond to connections between the global285

node xg and all local nodes xi, thus every two local nodes xi and xj are also

bound through the global node xg: xi ↔ xg ↔ xj , ∀i, j ∈ V. Finally, the last
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term ψij(xi, xj ; wi,wj) corresponds to the pairwise potentials in Eq. 3. The

partition function Z in Eq. 10 is represented in the similar way to Eq. 4.

Figure 4: The structure of our graphical model. Blue, red and the magenta nodes correspond

to the observation yi ∈ y, the labels xi ∈ x and the global node xg , respectively. Each label

xi is connected with the corresponding observation yi (unary potentials); and also with four

nearest neighbors and with the global node xg (pairwise potentials). Please note that the

global node xg is also connected with every observation, building the whole image y.

4. Evaluation290

4.1. Experiment Setup

We use the Environmental Microorganism Data Set (EMDS) [38], containing

20 classes of EMs {ω1, . . . , ω20} as shown in Fig. 5. Each EM class is represented

by 20 microscopic images, thus the dataset includes altogether 400 scenes. In

the following discussion, for simplicity, an EM name is sometimes represented295

by the symbol ωi (1 ≤ i ≤ 20), as depicted in Fig. 5.

We use 50% of the dataset images to train DeepLab-VGG-16 for pixel-level

feature extraction, RFs for unary potentials ϕi, and a local-global CRF for pixel

labeling. DeepLab-VGG-16 is trained by following the network structure and

hyper parameters provided as DeepLab-LargeFOV 2, except that the mini-batch300

2http://liangchiehchen.com/projects/DeepLab-LargeFOV.html
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ω1 Actinophrys ω2 Arcella ω3 Aspidisca ω4 Codosiga ω5 Colpoda

ω6 Epistylis ω7 Euglypha ω8 Paramecium ω9 Rotifera ω10 Vorticella

ω11 Noctiluca ω12 Ceratium ω13 Stentor ω14 Siprostomum ω15 K. Quadrala

ω16 Euglena ω17 Gonyaulax ω18 Phacus ω19 Stylonychia ω20 Synchaeta

Figure 5: Examples of images on EMDS.

size is changed from 30 to 20 due to the RAM size of our GPU. With respect to

RF training on 1024-dimensional pixel-level features, most regions in EM images

are backgrounds. This causes the imbalanced problem that pixel-level features

for backgrounds (majority class) significantly outnumbers features for 20 EM

classes (minority classes) [59]. As a result, a meaningless RF that classifies305

almost all pixels into the background class is favored, because its classification

accuracy on training images is high. To overcome this, for each of 21 classes (20

EM classes and the background class), an RF is trained by randomly sampling

the same number of pixels. Here, this number is chosen as the minimum number

of pixels among 21 classes (specifically, 19, 063 pixels for Epistilis (ω6)). The RF310

consists of NT = 100 trees of maximal depth 15. For the global node, we train

a RF with the same kind and amount of trees using global features in the 200

training images. Finally, a local-global CRF is implemented in the framework

of Direct Graphical Models C++ library [60].

Finally, the classification results are compared with the reference. For eval-315
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uation of pixel-level segmentation we report the recall and the precision of pixel

classification (labeling) as well as the overall accuracy. Additionally, we use

Average Precision (AP) [61] as an evaluation measure of pixel-level classifica-

tion. An AP is calculated by considering pixel classification results in each

image separately. For each EM class, pixels in the image are sorted based on320

the potentials for being that class. Then, an AP is computed as the average of

precisions each of which is computed at the position of a pixel belonging to the

class. A larger AP means a better result where pixels for the class are ranked

at higher positions. Such APs are computed for test images containing EMs

for the class, and averaged to indicate an abstracted pixel-level classification325

performance. Finally, we take the ‘Mean of such averaged APs’ (MAP) over all

the 20 classes to obtain an overall performance.

4.2. Evaluation of Pixel-level Features

In this section we demonstrate the effectiveness of pixel-level features ex-

tracted from DeepLab-VGG-16. For short, we call these ‘DCNN’ features and330

compare them to the following two sets of features:

SIFT: A Scale-Invariant Feature Transform (SIFT) feature is one of the most

popular local feature, and represents the shape in a local region, reasonably

irrespective of changes in illumination, rotation, scaling and viewpoint [62]. We

densely extract SIFT features by locating interesting points at all pixels. As a335

result, yi for each pixel is characterized by a 128-dimensional SIFT descriptor.

Simple: Here we have gathered some common features, which are usually used

in image classification: the intensity, calculated as the average of the red, blue

and green channels; the saturation component in HSL color space. These two

features are derived at 3 different scales: for the individual pixels and as the340

average in a local neighborhood of 15 × 15 and 25 × 25 pixels. Next we deter-

mine the variances of intensity, saturation and the gradient determined in local

neighborhoods of 7×7, 15×15 and 25×25 pixels of each site. The last feature is

the spacial coordinate feature, which describes the normalized distance of every

pixel from the image center. This results in 16 simple features.345
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We carry out two sets of experiments for every feature. In the first experi-

ment (noEdge) each node is classified solely based on the unary potentials, thus

setting the pairwise potential ψij(xi, xj) ≡ 1. In the second experiment (Potts)

we use our CRF model with the Potts pairwise potentials defined in Eq. 7. This

comparison should show the impact of different features on the classification350

with RF and CRF.

SIFT Simple DCNN

local +global local +global local +global

noEdge 2.21 % 10.77 % 18.04 % 35.03 % 54.78 % 62.19 %

Potts 3.80 % 10.99 % 19.60 % 31.40 % 53.69 % 61.77 %

Table 3: MAPs of the results for 3 sets of local features: SIFT, Simple, DCNN; and 2 types

of CRFs: local and local-global. The impact of the local features and addition the global

features is compared for two classification models: per-pixel RF (noEdges) and CRF with

Potts pairwise potentials (Potts).

The MAP for local CRF over 20 EM classes in these two experiments are

shown in Tab. 3. SIFT features show very poor results, and in spite of they might

be useful for solving correspondence problems, they lead to a low classification

rate, when used to support CRFs. Finally, we can observe that DCNN features355

deliver us more than ‘twice-as-better’ results than Simple features: 54.78%.

This validates that DCNN features work more robustly than SIFT and Simple

features for EM classification.

4.3. Evaluation of Global Features

In this section we demonstrate the effectiveness of the additional global fea-360

tures. As in the previous experiment, we compare three sets of features: SIFT,

Simple and DCNN features. Again we carry out two different experiments for

every feature set: noEdge and Potts (see Sec. 4.2 for more details).

The MAP over 20 EM classes in the two experiments are shown in Tab. 3.

As we can see from Tab. 3, the combination of Simple features with the global365

features increases the classification rate for them for all experiments near by

factor of two. This is done because the additional global node connected to
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all the local nodes provides a long-range interaction between the local nodes

and thus reduces the number of different EM classes present in the image. In

other words, the global node supports the decision on the correct EM class and370

helps to reduce the segments, labeled as wrong EM classes. We can observe

it in Fig. 6, where the incorporation of the global features leads to significant

clearance of the resulting label maps from the allogenic segments. We consider

this as the consequence of the global smoothness effect infused by the addition

of the global node. This validates that the combination of pixel-level features375

with the global features works more robustly than pixel-level features alone.

The impact of the global features to the classification with the local DCNN

features is not so huge: in average they increase already high MAP values

by additional 8%. We explain that by the fact, that the DCNN features in

comparison to the Simple features are very powerful for EM classification itself,380

and thus the introduction of the additional global constraints make less effect

as for other more weak features.

original image local local + global groundtruth

Figure 6: Segmentation results for two EMs: Stentor (top row) and Stylonychia (bottom row),

achieved in Potts experiment. Red-colored pixels indicate that they are classified (labeled) as

background while other colors represent pixels classified into different EM classes.

4.4. Evaluation of Segmentation Quality

In Sec. 4.2 and Sec. 4.3 we concentrated on evaluation of pixel-level EM clas-

sification results. In addition to the experiments noEdge and Potts (Sec. 4.2)385
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we carry out an experiment (Potts CS ) - CRF model with the contrast-sensitive

Potts pairwise potentials defined in Eq. 9. Furthermore, to examine the effec-

tiveness of our local-global CRF, it is compared to an advanced CRF model,

denseCRF, where pairwise potentials are defined by fully connecting all possible

pairs of pixels, in order to capture a variety of spatial relations and especially390

recover detailed local structures [46] (see also Sec. 2). In particular, the origi-

nal DeepLab approach uses denseCRF in the post-processing phrase [8]. Here,

DeepLab-VGG-16 is not used as a feature extractor, but used to obtain an

initial segmentation result that is then refined by denseCRF. We name this

approach as denseCRForg and examine its performance, in order to check the395

effectiveness of our approach that distills outputs at the penultimate layer of

DeepLab-VGG-16 as pixel-level features and uses them in other CRFs.

Moreover, our approach is compared to a currently popular DCNN-based

image segmentation model, Fully Convolutional Network (FCN) [35]. In FCN,

a pre-trained DCNN for image classification is re-purposed to segmentation400

using deconvolution layers, which upsample low-resolution feature maps into the

ones that has the original image size and represent pixel-level classification. A

version of FCN based on VGG-16 is selected for fair comparison to our approach.

In particular, we choose FCN-32s where feature maps after (two customised

convolution layers following) the top max-pooling layer in VGG-16 (see the left405

side in Fig. 2) are enlarged into image-size feature maps based on a deconvolution

layer with a stride size 323. FCN-32s is trained on EM images by following the

network structure and hyper parameters defined for voc-fcn32s4.

Regarding evaluation measures for segmentation results, MAP served as a

good measure for justifying our choice of features, but it left mainly unclear410

3FCN-32s only analyzes coarse-level feature maps. Some versions of FCN (FCN-16s and

FCN-8s) support a ‘skip’ architecture to fuse coarse- and fine-level feature maps. However,

our preliminary experiments showed that this yields no performance improvement (FCN-16s

and FCN-8s get (63.63% (average recall), 95.31% (OA)) and (64.34%, 95.48%), respectively),

and often causes over-segmentation of EM regions into small meaningless ones.
4https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/voc-fcn32s
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the impact of applying CRFs. Also, a precision is not considered suitable for

the following reason: Fig. 7 show segmentation results by our local-global CRF

(using Potts pairwise potentials) and denseCRForg for three EM images. As

can be seen from ground truth images, each EM has a fine-grained structure

such as radial lines of ω1 or thin tails of ω4 and ω9. One method like our415

local-global CRF roughly covers the whole region of the EM, while another

like denseCRForg only captures its main part. The latter essentially gets a

higher precision than the former. However, in practice, the whole region of

an EM is more meaningful for a user than its partial region, so as to avoid

missing its appearance or misunderstanding its structural characteristic. Hence,420

a recall is used as our main evaluation measure for segmentation results, and

an overall accuracy (OA) is used as an auxiliary measure to check how similar

extracted EM regions are to the ground truth. OA is computed only for the

case considering all classes. If one tries to compute an OA for each class, it is

equal to a recall.425

(Original image) (Ground truth) (Local-global CRF: Potts) (denseCRF     )

ω1

ω4

ω9

org

Figure 7: Examples of segmentation results for EMs that have fine-grained structures.

In order to evaluate the segmentation quality in more detail, let us consider

the recall for 21 classes as well as the OA values in Tab. 4. We see that the
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use of only unary potentials in noEdge experiment gives poor OAs, whereas the

application of local edge potentials increases the segmentation accuracy more

than by 10%. Such a great improvement is conditioned by the fact that the430

major part of the EM images is covered by the background class (which is not

considered in MAP evaluation), and exactly the improvement on that class leads

to the leap in OA values in Tab. 4. This may be more clear by looking at the

recall values for the background class. In its turn, the average recall values

for the local-global CRF models outperform both denseCRF models: 74.76% –435

79.40% for local-global CRF versus 67.87% – 68.85% for denseCRF.

The example segmentations are shown in Fig. 8, which indicates some dif-

ficult cases with semi-transparent EMs, e.g., Arcella (ω2), Codosiga (ω4), Cer-

atium (ω12) and Synchaeta (ω20), where it is hard for our method to find their

invisible body parts. For example, ω4 has class-specific antennas, which are la-440

beled correctly, while the semi-transparent inner body is labeled wrongly. The

same we observe for ω20 where transparent body parts have very similar fea-

tures as the background and other EMs, so they are labeled wrongly. For the

difficult cases RF labels only a particular part of an EM as the relevant object,

where the classification result may be still correct, but segmentation is incom-445

plete. Because this particular part contains very specific characteristics, only

using this part is regarded as leading the most accurate classification. Tab 4

and Fig 8 show that our local-global CRF is better than FCN. The confusion

matrix of the result achieved in the experiment Potts is shown in Fig. 9.

4.5. Comparison to Existing Methods450

In this section we compare our CRF approach with the Region-Based Support

Vector Machine (RBSVM) [19], which can also localize EMs with bounding

boxes. The results for RBSVM are available only for the first 15 classes of

EMDS dataset and only in terms of MAP. We compare the performance of 3

methods: 1. RBSVM : RBSVM based on SIFT-BoVW features is trained on 15455

classes. Bag-of-Visual-Words (BoVW) involves two steps: The first step is to

obtain a set of visual words by clustering a large number of SIFT features. Each
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Class
local-global CRF denseCRF denseCRForg FCN

noEdge Potts PottsCS Gaussian Gaussian

background 83.02 % 96.24 % 96.28 % 97.13 % 98.94 % 99.22 %

ω1 91.43 % 81.47 % 79.22 % 75.00 % 53.86 % 45.78 %

ω2 88.70 % 90.25 % 86.59 % 85.57 % 87.45 % 89.19 %

ω3 94.13 % 88.86 % 93.11 % 84.49 % 83.50 % 85.10 %

ω4 87.04 % 64.61 % 62.73 % 46.19 % 41.57 % 37.08 %

ω5 75.48 % 72.75 % 72.17 % 68.30 % 74.59 % 80.88 %

ω6 54.77 % 13.80 % 21.09 % 7.36 % 0.50 % 15.80 %

ω7 79.93 % 81.07 % 76.12 % 71.36 % 80.22 % 83.11 %

ω8 83.93 % 86.37 % 79.96 % 75.50 % 84.49 % 77.32 %

ω9 45.82 % 42.93 % 45.74 % 33.08 % 35.64 % 44.22 %

ω10 87.96 % 86.56 % 84.03 % 75.29 % 86.25 % 69.83 %

ω11 92.57 % 93.57 % 91.92 % 90.63 % 90.19 % 83.44 %

ω12 83.82 % 77.28 % 77.16 % 69.57 % 56.87 % 37.13 %

ω13 75.19 % 81.62 % 74.05 % 62.78 % 68.10 % 55.76 %

ω14 93.23 % 86.41 % 87.31 % 85.18 % 82.54 % 59.08 %

ω15 79.20 % 81.39 % 76.07 % 67.46 % 68.45 % 68.06 %

ω16 71.29 % 73.66 % 73.81 % 60.28 % 69.64 % 82.21 %

ω17 65.35 % 64.52 % 65.20 % 60.95 % 65.12 % 65.87 %

ω18 82.65 % 86.98 % 83.76 % 74.63 % 84.53 % 57.59 %

ω19 65.77 % 64.39 % 61.05 % 53.63 % 62.82 % 27.88 %

ω20 86.02 % 82.65 % 82.67 % 80.89 % 70.95 % 71.57 %

average: 79.40 % 76.07 % 74.76 % 67.87 % 68.85 % 63.62 %

OA: 82.63 % 94.19 % 93.98 % 94.05 % 95.85 % 95.48 %

Table 4: Recall and Overall Accuracy (OA) of the experimental results with DCNN features.

Comparison between six classification models: per-pixel RF (noEdges), CRF with Potts pair-

wise potentials (Potts), CRF with contrast-sensitive Potts model (PottsCS), fully connected

CRF with Gaussian pairwise potentials (denseCRF ), fully connected CRF on segmentation re-

sults by the original DeepLab method [8] (denseCRForg), fully convolutional network (FCN ).
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ω2 ω4 ω12 ω20

Figure 8: Segmentation results for 4 EMs (ω2, ω4, ω12, ω20) with DCNN features. 1st row:

input image; 2nd row: local-global CRF noEdge; 3rd row: local-global CRF Potts; 4th row:

local-global CRF Potts CS ; 5th row: denseCRF; 6th row: denseCRForg ; 7th row: FCN; 8th

row: groundtruth.
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Figure 9: Confusion matrix for the experiment Potts with use of DCNN features. All values

are given in [%]. Overall accuracy: 94.2%.

cluster center represents a characteristic SIFT feature and is regarded as a visual

word. Given a region in an image, RBSVM creates a histogram of visual words

by assigning each SIFT feature in this region to the most similar visual word.460

RBSVM localizes an EM to the region from which the histogram maximizing the

SVM score is obtained [19]. 2. denseCRF : denseCRF based on DCNN features

is trained on 20 classes; 3. local-global CRF : our CRF approach based on

DCNN features which is also trained on 20 classes. Please note, that the CRF-

based approaches are trained not on 15, but on 20 classes. Nevertheless, the465
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comparison is fair, because usually the additional classes lead to additional miss-

classification, and thus to the reduction of the overall classification accuracy.
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Figure 10: APs and MAPs of the EM classification results. Comparison between the RBSVM-

and CRF-based approaches.

Fig. 10 represents the AP values for every EM class as well as the MAP

value. First, we explain how to obtain image-level classification results based

on pixel-level segmentation results by our CRF approach. We consider every470

label xi = c, c ∈ L\{background} of a pixel yi of the segmented scene as a vote

that the scene represents EM class c. Normalizing all the votes for a scene we

achieve a probability of the scene to represent c. We sort all the test scenes in

terms of these probabilities and calculate the AP value for c.

As seen from Fig. 10, the CRF-based classifiers (denseCRF and local-global475

CRF) significantly outperform the RBSVM classifier. The MAP value of RB-

SVM is 25.06%. Compared to these, the MAP of denseCRF reached 79.22% and

MAP of local-global CRF – 91.40%. Such leap becomes possible because CRFs

do not treat image patches independently as in RBSVM. The MAP value for

local-global CRF is considerably higher than the MAP value for the denseCRF,480

this is due to the fact that the DCNN features in our model are supported by
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the global ones.

4.6. Discussion about Computation Times

Finally, we briefly describe computational times of our EM classification

method. Pixel-level feature extraction based on a DCNN were conducted on a485

workstation equipped with Intel R© CoreTM i7-7700 CPU with 3.60 GHz, 32GB

RAM and GeForce GTX 1080 8GB. By following the original implementation of

DeepLab [8], the feature extraction phase was run in the Caffe framework [63].

The re-purposing and fine-tuning step of a pre-trained DCNN (VGG-16) took

8417 seconds, and pixel-level features for all the 400 EM images were extracted490

in 3370 seconds by accessing the penultimate layer of the DCNN with the python

interface (pycaffe).

Regarding the training our RF-based unary potentials on the DCNN fea-

tures, building CRF and conducting inference we used another workstation

equipped with Intel R© CoreTM i7-4820K CPU with 4.50 GHz, 64GB RAM and495

dual SLI GeForce GTX 780 3GB. Training and classification with our local-

global CRF was implemented with the DGM library [60]. Training of our DGM-

based classifier on 200 EM images (approx. 4.2 × 105 training samples) took

8.9 seconds, building and initializing the graphical model for one scene – 1.9

seconds and inference for one scene took in average 3.7 seconds.500

5. Conclusion and Future Work

In this paper, we introduced an EM classification system. Considering the

small training dataset problem, we adopt an approach where a DCNN pre-

trained on large auxiliary image data is re-purposed and fine-tuned to a pixel-

level feature extractor using EM images. The global features are used to sup-505

port the classification and improve the segmentation quality by providing a

long-range consistency between pixel labels. To overcome the noisy image prob-

lem, CRF is used to jointly localize and classify EMs by considering the spatial

relations among pixel-level features, and their relations to global features. Ex-
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perimental results validate the effectiveness of each of these three contributions510

(i.e., DCNN features, global features and CRF).

From the architectural perspective, our system consists of two main parts,

feature extraction based on DCNN features, and pixel-level classification using

the local-global CRF. Both parts benefit from the above-mentioned contribu-

tions. The experimental results in Tab. 3 have justified the usefulness of DCNN515

features over other common features. Although the performance improvement

is not so dramatic as DCNN features, Tab. 4 validates the advantage of the CRF

over denseCRF, with the support of global features that give about 8 % improve-

ment, as seen from Tab. 3. But, our EM classification system provides a freedom

in choosing feature extraction and classification methods, so the DCNN-based520

method and the local-global CRF can be replaced with more advanced ones in

the future.

Regarding the technical improvement, we will use more advanced pairwise

potentials, trained with a DCNN to connect the global node with the local

nodes. This will allow to omit the assumption that only one EM present in525

the scene. Especially, rather than optimizing DCNN-based potentials and a

CRF separately, we will learn ‘message estimators’ to efficiently perform their

joint optimization [64]. Here, instead of explicitly compute potentials, message

estimators only output messages required in a message passing algorithm (in

our case Loopy Belief Propagation (LBP)).530
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