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1. Introduction 
 
1.1 Motivation 
 
Singular diffusion equations such as total variation and balanced forward-backward diffusion 

are appealing: they have a finite extinction time, and experiments show that piecewise constant 
structures evolve. Unfortunately, their implementation is awkward. The goal is to introduce a novel 
class of numerical methods for these equations in the 2D case. They should be simple to implement, 
absolutely stable and do not require any regularization in order to make the diffusivity bounded. 
The presented schemes are based on analytical solutions for 2 x 2-pixel images which are combined 
by means of an additive operator splitting. It has been shown that they may also be regarded as 
iterated 2D Haar wavelet shrinkage. Experiments demonstrate the favorable performance of the 
numerical algorithm. 

 
1.2 Diffusion process basics 
 
Diffusion is the physical term: diffusion is the net action of matter (particles or molecules), 

heat, momentum, or light whose end is to minimize a concentration gradient. Diffusion process is 
characterized by two standings. The first one is that the diffusion process always preserves mass of 
matter [4]. And the second is that diffusion process equlibrates differences of matter concentration. 
These standings are easy to describe with two formulas: 

1. Fick’s law describe the equilibration of concentration differences:  
 Concentration gradient         creates flux     , and     is a diffusion tensor. 

2. Continuity equation describes conservation of mass:    
In such a way, we have derived the diffusion equation: 
 
 
 
In a case of linear diffusion (when we do not consider local strucrure of matter , i.e. the 

diffusion tensor is equivalent to identity) we obtain the simpliest diffusion process:  
To understand how it works, imagine a cap of milk. You can shake this cap somehow to create 

wawes on the milk surface. But as soon as you put this cup on a table, the milk will start settling 
down and in some seconds you will have no waves anymore: 

 

 

 
Fig. 1. UdS logo. Linear diffusion example. 

 
You still have the same amount of milk (mass preservation), but the difference between any two 
drops of milk at the surface is minimal – you have flat surface (equilibrium of concentration 
differences). In  image processing, diffusion is very useful for image enhacement. For example – for 
denoising an image. When we want to get rid of high frequences (noise or some small details) but 
preserve edges from blurring. It is pity, but it is almost impossible using linear diffusion.  

 
 
 

ugj ∇⋅−=
u∇ j g

)( ugdivut ∇⋅=∂

)( ugdivut ∇⋅=∂

uut ∆=∂



So, let us concider nonlinear diffusion. This process avoids delocatisation and blurring of 
edges.  It is described with the following equation:  

 
 

 
with stable initial and boundary conditions: 
 
 
 

 
Function ()g  takes as an argument a fuzzy edge detector u∇  and should be chosen as a 

decreasing nonnegative function. It means that on the edges, where image derivatives are high, low 
values of function ()g  will embarrass diffusion. Now let us suppose that we want to get rid of noise 
(or high frequencies) with help of diffusion process. And let us, with help of the following 
illustration, compare the best result of eliminating noise with linear diffusion process and, nonlinear 
diffusion process: 

 

 

 
Fig. 2. UdS logo. Left: Linear diffusion. Right: Nonlinear diffusion. 

 
We can clearly see that in the right column, our owl has no plumage anymore but the edges are very 
good preserved.   

Singular diffusion filters lead to a piecewise constant images. As function ()g , diffusivity, we 
use singular diffusivities. As a prototype for a class of singular diffusivities we consider the family: 
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In this paper we shall consider two singular diffusivities. Total variation (TV) diffusivity, that 

has interesting properties such as finite extinction time and shape-preserving qualities – the case 

when 1=p : 
u

ug
∇
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1)( . For 1>p  the diffusion not only preserves edges but even enhances 

them. Balanced forward-backward (BFB) diffusivity – the case when 2=p : 2
1)(
u

ug
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most problems with singular diffusivities are that it is possible to have very small values of u∇  
and in such cases our function ()g  becomes unbounded. That implies numerical instability, and 
failure of solver. As a result, iterative numerical schemes may reveal slow convergence, and in 
general numerical errors can be amplified. In order to eliminate all these problems, it is common to 
regularize the diffusivity function by replacing it by the bounded diffusivity: 
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In this case, however, one observes that blurring artifacts are introduced and some of the nice 

theoretical properties of singular nonlinear diffusion filters do no longer hold. The goal of the 
present paper is to address these problems by introducing a novel class of numerical schemes for 
singular diffusion equations. 
 

2. Scheme for 2 x 2 pixel images 
 
2.1 Nonlinear diffusion 
 
Let us consider diffusion equations on 4-pixel image with periodic boundary condition: 

 
Fig. 3. Sketch of the 4-pixel image with periodic boundary condition. 

 
with initial image data  

Now, we would like to build a numerical approximation of diffusivity in the middle of this 
picture. Let the grid size in both directions will be 1=h ; and )(uD  denotes the discretization of 

T
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))((: uDgg = . To build the approximation of )(uD we shall use all the 4 pixels and the following 

directions: Tx )0,1(= ,  Ty )1,0(= , T)1,1(
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Now let us build two types of the following step of discretization. We shall use the notation 
•

=
∂
∂ u

t
u . So, the first type is the usual discretization with respect to the directions Tx )0,1(=  and 

Ty )1,0(= :  
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and the second type with respect to the directions T)1,1(
2

1
=ξ  and T)1,1(

2
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−=η : 

 
 
Combining these two types of discretizations with coefficient [ ]1,0∈α  we get: 
 
 
 
 

 
And the following system of equations: 
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with initial conditions 2,1,,)0( ,, == jifu jiji . From 02,21,22,11,1 =+++
••••

uuuu  we see that the 

average grey value )(
4
1: 2,21,22,11,1 ffff +++=µ  is preserved during the diffusion process. 

We are mainly interested in case 
2
1

=α , where the above system of equations further 

simplifies to  
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which is a dynamical system with discontinuous right hand side. It is not difficult to verify that this 
system possesses the unique analytical solution: 
 

 
 
 
 
 
For total variation diffusion we have: 
 
 
 
 
 
For balanced forward – backward diffusion we have: 
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2.2 Outlook 
 
We derived a simple scheme for 2x2 pixel images, which is very easy for numerical 

implementation. This scheme does not require regularization. And it is clearly seen that if ∞→t  
we get linear diffusion process. This happens in regions where the gradient is already close to zero. 
Also the same solutions we can be achieved with Haar wavelet shrinkage. 

Now let us proceed with N x M pixel images. 
 
3. Extension for N x M pixel images 
 
3.1 Naïve numerical scheme  
 
Now let us consider images with arbitrary size and reflecting boundary conditions. To solve 

the diffusion equation )( ugdivut ∇⋅=∂  with diffusivity ( ) pu
ug

∇
=∇

1  we shall discretize this 

equation in space with respect to x , y  and ξ , η  directions, than combine both discretizations via 

weighted coefficient α . Now we chose 
2
1

=α  and apply the discretization via an explicit Euler 

scheme. We can write the time derivative as 
τ
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following notations for average grey value:  
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Using these notations, we can now write down the naïve scheme for solving diffusion 

equation:  
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Here τ  denotes the time step size and k

jiu ,  the approximate solution at pixel (i, j) and time τk . 
Unfortunately, due to the singularity of g at zero, this scheme becomes unstable with respect to the 
maximum-minimum principle for arbitrary small time steps if neighboring pixel values become 
arbitrary close. We use therefore a different approximation. 
 

3.2 The “four – pixel” scheme 
 
For each pixel (*) with coordinates (i, j): 

• Consider the four cells 
 



 
• Compute the analytical solutions 

This gives four approximations 
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• Average: 
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3.3 Stability and consistency 
 
The values of the analytical solution at arbitrary times are convex combinations of its initial 

values. The novel scheme therefore satisfies the maximum – minimum principle. Consequently, it 
is absolutely stable for each τ . The scheme is conditionally consistent. Also we have equivalence 
to shift and rotation invariant wavelet shrinkage. 

 
4. Results 
 

In Figure 4, we contrast the regularization-free scheme based on the analytical 2x2-pixel solution 
for TV diffusion with a standard explicit discretization. In this scheme, BFB diffusivity is 
approximated by the regularized BFB diffusivity

22
1

ε+∇u
. Since the stability condition for 

explicit schemes imposes to the time step size a bound which is inversely proportional to the upper 
bound of the diffusivity, a high number of iterations is needed for reasonable ε . It can be seen that 
the 2x2-pixel scheme and the unregularized BFB diffusivity which cannot be used in the explicit 
scheme considerably reduce blurring effects caused by the discretization. 

 

 
Fig. 4. Left: Original image (source: www.fishki.net). Middle: 2 x 2 pixel scheme, 5104 −×=τ , 135 iterations. Right: 

Balanced forward –backward diffusion with standard explicit scheme, 1,0=ε , 4105,2 −×=τ ,  150000 iterations. 
Author: S. Kosov (2006) 

 



Figure 5 and figure 6 demonstrate total variation and balanced forward–backward diffusion 
accordingly. The elimination of noise with edge preservation (and even enhancement in case of 
BFB diffusion) is very good seen on bottom couple of pictures. Gradient u∇  is very sensitive to 
high frequencies, and the bottom right pictures show only contours of the objects in scene. The 
bottom left images are the results of fuzzy edge detector processor with original image as initial 
data. There we can observe not only contours but also a lot of high frequencies where spatial 
derivatives are high. Therefore, new 2 x 2 pixel scheme could be very helpful for pattern 
recognition and segmentation. 

 
 

 

 
Fig. 5. Top left: Original image (source: www.fishki.net). Top right 2 x 2 pixel scheme for total variation diffusion, 

4105 −×=τ , 100 iterations. Bottom left: Fuzzy edge detector. Original image. Bottom left: Fuzzy edge detector. 
Filtered image. Author: S. Kosov (2006) 

 



 

 
Fig. 6. Top left: Original image. Top right 2 x 2 pixel scheme for balanced forward – backward diffusion, 

5105,4 −×=τ , 120 iterations. Bottom left: Fuzzy edge detector. Original image. Bottom left: Fuzzy edge detector. 
Filtered image. Author: S. Kosov (2006) 

 
5. Summary 
 
Novel numerical schemes for a favorable class of singular nonlinear diffusion equations that 

includes TV and BFB diffusion have been introduced. These schemes can be distinguished from 
other schemes by the fact that they do not require to regularize the diffusivities. They are based on 
analytical solutions for 4-pixel images. These solutions create extremely simple algorithms that are 
absolutely stable in the maximum norm, conditionally consistent and reveal good rotation 
invariance. The experiments have shown that they give sharper results at edges than traditional 
schemes with regularized diffusivities, even for significantly larger time steps. This more 
pronounced tendency to create piecewise constant images is particularly suited for singular 
nonlinear PDEs.  



References 
 
1. Martin Welk, Joachim Weickert, Gabriele Steidl. A Four-Pixel Scheme for Singular 

Differential Equations. http://www.mia.uni-saarland.de/publications.shtml 
2. V. I. Tsurkov. An analytical model of edge protection under noise suppression by 

anisotropic diffusion. Journal of Computer and Systems Sciences International, 39(3):437-440, 
2000. 

3. I. Pollak, A. S. Willsky, and Y. Huang. Nonlinear evolution equations as fast and exact 
solvers of estimation problems. IEEE Transactions on Signal Processing, 2004. 

4. Diffusion process description: http://en.wikipedia.org/wiki/Diffusion  
5. Basics of differential equations discretization: 

http://en.wikipedia.org/wiki/Forward_difference 
 
 


