

Lecture 9:

The Human Visual System

Contents

- 1. Radiometry vs Photometry recap
- 2. High Dynamic Luminance range
- 3. The eye
- 4. Early vision
- 5. High-level analysis
- 6. Color perception

Electromagnetic (EM) radiation

• From long radio waves to ultra short wavelength gamma rays

Visible spectrum: ~400 to 700 nm (all animals)

- Likely due to development of early eyes in water
 - Only very small window that lets EM radiation pass though

Radiation Law

Physical model for light

- Wave / particle dualism
 - Electromagnetic radiation wave model
 - Photons: $E_{ph} = hv \rightarrow \text{particle model & ray optics } (h: \underline{Planck \ constant})$
- <u>*Plenoptic function*</u> defined at any point in space

Radiometric Units

Specification	Definition	Symbol	Unit	Quantity
Energy		Q_e	[J = W·s] (joule)	Radiant energy
Power, flux	$dQ/_{dt}$	Φ_e	[W = J/s] (watt)	Radiant flux
Flux density	dQ _{/dAdt}	E _e	[W/m²]	Irradiance
Flux density	dQ _{/dAdt}	B _e	[W/m²]	Radiosity (radian exitance)
Intensity	$dQ/_{d\omega dt}$	I _e	[W/sr]	Radiant intensity
	$dQ_{/dAd\omega dt}$	L _e	[W/(m²·sr)]	Radiance

Equivalent units to radiometry

- Weighted with <u>luminosity function</u> $V(\lambda)$ (a.k.a. luminous efficiency function)
- Considers the spectral sensitivity of the human eye
 - Measured across different humans
- Spectral or (typically) "total" units
 - Integrate over the entire spectrum and deliver a single scalar value

$$\Phi_{\nu} = K_m \int V(\lambda) \Phi_e(\lambda) d\lambda$$

$$K_m = \frac{680 \ lm}{W}$$

- Simple distinction (in English!):
 - Names of radiometric quantities contain "radi"
 - Names of photometric quantities contain "lumi"

Photometric Units

Specification	Definition	Symbol	Unit	Quantity
Energy		Q_{v}	[T = lm·s] (talbot)	Luminous energy
Power, flux	$dQ/_{dt}$	Φ_v	[lm = T/s] (lumen)	Luminous flux (<i>e.g.</i> emitted power of lamp)
Flux density	dQ/ _{dAdt}	E_{v}	[lx = lm/m²] (lux)	Illuminance
Flux density	dQ _{/dAdt}	B_v	[lx = lm/m²] (lux)	Luminosity (<i>e.g.</i> illumination on a desk)
Intensity	$dQ_{/d\omega dt}$	I_v	[cd = lm/sr] (candela)	Luminous intensity (<i>e.g.</i> intensity of a point light)
	$dQ_{/dAd\omega dt}$	L_v	[lm/(m²·sr)] (nits)	Luminance (<i>e.g.</i> brightness of a monitor)

Typical illumination intensities:

Light source	Illuminance [lux]	
Direct solar radiation	25,000 - 110,000	
Day light	2,000 – 27,000	
Sunset	1 - 108	
Moon light	0.01 - 0.1	
Starry night	0.0001-0.001	
TV studio	5,000 - 10,000	
Shop lighting	1,000 – 5,500	
Office lighting	200 – 550	
Home lighting	50 – 220	
Street lighting	0.1 – 20	

Luminance Range

How to display computed / measured HDR values on an LDR device ?

• Tone mapping

Perception Effects: Vision Modes

Simulation requires:

- Control over color reproduction
- Local reduction of detail visibility (computationally expensive)

Visual Acuity and Color Perception

Photopic vision

transition

Mesopic / photopic 0 F. transition - 2 2 3 = 8 POTEC DEFFOTEC a) daylight: 1000 cd/m^2 b) interior: 10 cd/m² Scotopic / mesopic Scotopic vision c) moonlight: 0.04 cd/m^2 d) starlight: 0.001 cd/m^2

12

Adaptation to dark much slower

I sudden change in illumination

Simulation requires:

• Time-dependent filtering of light adaptation

Physical structure well established

Perceptional behavior complex and less understood process

Optic chiasm

Optical Chiasm

Right half of the brain operates on left half of the field of view

• From both eyes!!

And vice versa

• Damage to one half of the brain can results in loss of one half of the field of view

Perception and Eye

Human Visual Perception

early vision (eyes)

Determines how real-world scenes appear to us

Understanding of visual perception is necessary to reproduce appearance, *e.g.* in tone mapping

High-resolution foveal region with highest cone density Poisson-disc-like distribution

Cone mosaic in fovea which subtends small solid angle

Cone mosaic in periphery with almost 180° field of view

Receptors on opposite side of incoming light

Early cellular processing between receptors & nerves

• Mainly for rods

Relative sensitivity of cones

Different for cones (black) & rods (green)

Fovea (centralis):

- Ø 1-2 visual degrees
- 50,000 cones each of ~ 0.5 arcminutes angle and ~2.5 μm wide
- No rods in central fovea, but three different cone types:
 - L(ong, 64%), M(edium, 32%), S(hort wavelength, 4%)
 - Varying resolution: 10 arcminutes for S vs. 0.5 arcminutes for L & M
- Linked directly 1:1 with optical nerves,
 - 1% of retina area but covers 50% visual cortex in brain
- Adaptation of light intensity only through cones

Periphery:

- 75-150 M. rods: night vision (B/W)
- 5-7 M. cones (color)
- Response to stimulation by single 1 photons (@ 500 nm)
 - 100x better than cones, integrating over 100 ms
- Signals from many rods are combined before linking with nerves
 - Bad resolution, good flickering sensitivity

This is a text in red

This is a text in green

This is a text in blue

This is a text in red This is a text in green

This is a text in blue

This is a text in red This is a text in green This is a test in blue

Visual Acuity

Receptor density

Resolution in line-pairs/arcminute

Resolution of the Eye

Resolution-experiments

- Line pairs: eye ~ 50-60 p./degree \rightarrow resolution of 0.5 arcminutes
- Line offset: 5 arcseconds (hyperacuity)

- Eye micro-tremor: 60-100 Hz, 5 μm (2-3 photoreceptor spacing)
 - Allows to reconstruct from super-resolution (w/ Poisson pattern)
- Together corresponds to 19" display at 60 cm away from viewer: 18,000² pixels with hyperacuity 3,000² without hyperacuity

Fixation of eye onto (moving) region of interest

- Automatic gaze tracking, automatic compensation of head movement
- Apparent overall high resolution of fovea

Visual acuity increased by

- Brighter objects
- High contrast

Poisson – Disc Experiment

Human visual system

- Perception very sensitive to regular structures
- Insensitive against (high-frequency) noise
- Campbell-Robson sinusoidal contrast sensitivity chart

Contrast sensitivity: is a measure of the ability to discern between luminances of different levels in a static image

Maximum acuity at 5 cycles per degree

• Varies between individuals, reaching a maximum at approximately 20 years of age, and at angular frequencies of about 2–5 cycles per degree.

It can decline with age and also due to other factors such as

- Glaucoma (affects peripheral vision: low frequencies)
- Multiple sclerosis (affects optical nerve: notches in contrast sensitivity)
- Cataracts and diabetic retinopathy.

Human Contrast Sensitivity

Color Contrast Sensitivity

Color vs. luminance vision system

- Similar but slightly different curves
- Higher sensitivity at lower frequencies
- High frequencies less visible

Image compression

• Exploit color sensitivity in lossy compression

Weber-Fechner law (Threshold Versus Intensity, TVI)

- Perceived brightness varies linearly with log(radiant intensity)
 - $E = K + c \log I$
- Perceivable intensity difference
 - 10 cd vs. 12 cd: ΔL = 2 cd
 - 20 cd vs. 24 cd: ΔL = 4 cd
 - 30 cd vs. 36 cd: ΔL = 6 cd

 $L + \Delta L$

L

Weber-Fechner Examples

Mach Bands

Due to lateral inhibition

• the capacity of an excited neuron to reduce the activity of its neighbors

"Overshooting" along edges

- Extra-bright rims on bright sides
- Extra-dark rims on dark sides

Mach Bands

Due to lateral inhibition

• the capacity of an excited neuron to reduce the activity of its neighbors

"Overshooting" along edges

- Extra-bright rims on bright sides
- Extra-dark rims on dark sides

Pre-processing step within retina

- Surrounding brightness level weighted negatively
 - A: high stimulus, maximal bright inhibition
 - B: high stimulus, reduced inhibition \rightarrow stronger response
 - D: low stimulus, maximal dark inhibition
 - C: low stimulus, increased inhibition \rightarrow weaker response

High – pass filter

- Enhances contrast along edges
- Differential operator (Laplacian / difference of Gaussian)

Lateral Inhibition: Hermann Grid

-+-

D

-+- C

Apparent dark spots at peripherial crossings

- Weakly if within foveal Ω (B): smaller filter extent
- Strongly within periphery (A): larger filter extent

Explanation

- Crossings (C): more surround stimulation
 - More inhibition \Rightarrow weaker response
- Streets (D): less surround stimulation
 - Less inhibition ⇒ greater response

Simulation

- Convolution with differential kernel
- Darker at crossings, brighter in streets
- Appears more steady
- What if inversed colors?

Periphery

Fovea

Some Further Weirdness

High-Level Contrast Processing

High-Level Contrast Processing

Apparent contrast between inner and outer shades

Apparent contrast between inner and outer shades

- Due to gradual darkening / brightening towards a contrasting edge
- Causes B to be perceived similarly to A

Internal scattering / blur of sources of high luminance Computationally expensive to simulate

Shape Perception

Depends on surrounding primitives

- Size emphasis
- Directional emphasis

Geometric Cues

Automatic geometrical interpretation

- 3D perspective
- Implicit scene depth

Visual "Proofs"

Experience & expectation

• Pictures usually horizontal

Local cue consistency

• Eyes and mouth look right, but actually are upside-down

Experience & expectation

• Pictures usually horizontal

Local cue consistency

• Eyes and mouth look right, but actually are upside-down

SNOLLIGT METHODES *TES NORMETTES* ENUNBREAN BIOVAR GOERY DELACOTE

Impossible Scenes

Escher et al.

- Confuse HVS by presenting contradicting visual cues
- Locally consistent but not globally

Vergence: Cross eyers to look at the same 3D spot Accommodation: Focusing at a particular depth plane

SIRDS Construction

- Assign arbitrary color to pixel p_0 in image plane
- Trace from eye points through p₀ to object surface
- Trace back from object to corresponding other eye
- Assign color at p_0 to intersection points p_{1L} , p_{1R} with image plane
- Trace from eye points through p_{1L} , p_{1R} to object surface
- Trace back to eyes
- Assign p_0 color to p_{2L} , p_{2R}
- Repeat until image plane is covered

Appearance of movement in static image

- Due to cognitive effects of interacting color contrast & shape position
- Saccades \rightarrow difference in neural signals between dark and bright areas

Motion Illusion

Motion Illusion

Cones excited by color eventually lose sensitivity

• Photoreceptors adapt to overstimulation and send a weak signal

When switching to grey background

- Colors corresponding to adapted cones remain muted
- Other freshly excited cones send out a strong signal
- Same perceived signal as when looking at the inverse color

If staring for ~15 seconds, you may see a giraffe appear

