Computer Graphics
 Sergey Kosov

Lecture 12:

Transformations

Contents

1. Introduction
2. Basic Transformations
3. Concatenation of transformations
4. Homogeneous Coordinates
5. Affine Space
© 2020 Sergey Kosov

Vector Space

- The vector space V in 3D over the real numbers

$$
\vec{v}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \in V^{3}=\mathbb{R}^{3}
$$

- Vectors in nD are written as $n \times 1$ matrices
- Vectors describe directions - not positions
- All vectors conceptually start from the origin of the coordinate system
- 3 linear independent vectors create a basis

$$
\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

- Any 3D vector can be represented uniquely with coordinates

$$
\vec{v}=v_{1} \vec{e}_{1}+v_{1} \vec{e}_{1}+v_{1} \vec{e}_{1} \quad v_{1}, v_{2}, v_{3} \in \mathbb{R}
$$

Vector Space - Metric

- Standard scalar product a.k.a. dot or inner product
- Measure lengths

$$
|\vec{v}|^{2}=\vec{v} \cdot \vec{v}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}
$$

- Compute angles

$$
\vec{v} \cdot \vec{u}=|\vec{v} \| \vec{u}| \cos (u, v)
$$

- Projection of vectors onto other vectors

$$
|\vec{u}| \cos \theta=\frac{\vec{v} \cdot \vec{u}}{|\vec{v}|}=\frac{\vec{v} \cdot \vec{u}}{\sqrt{\vec{v} \cdot \vec{v}}}
$$

Orthonormal basis

- Unit length vectors
- $\left|\vec{e}_{1}\right|=\left|\vec{e}_{2}\right|=\left|\vec{e}_{3}\right|=1$
- Orthogonal to each other
- $\vec{e}_{i} \cdot \vec{e}_{j}=\delta_{i j}$

Handedness of the coordinate system

- Two options: $\vec{e}_{1} \times \vec{e}_{2}=\vec{e}_{3}$
- Positive:

Right-handed (RHS)

- Negative: Left-handed (LHS)
- Example: Screen Space

- Typical: X goes right, Y goes up (thumb \& index finger, respectively)
- In a RHS: Z goes out of the screen (middle finger)
- Be careful:
- Most systems nowadays (including OpenRT) use a right handed coordinate system
- But some are not (e.g. RenderMan) \rightarrow can cause lots of confusion

Introduction

Transformation

- Matrix multiplication can be used to transform vectors through multiplication: $x^{\prime}=A x$
- A matrix used in this way is called a transformation matrix
- Simplest is scaling:

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \times\binom{ x}{y}=\binom{s_{x} x}{s_{y} y}
$$

Transformations

- Transformations can be divided into many classes

- Rigid / Euclidian transformation: preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or their combination
- Similarity transformation: is an angle-preserving transformation whose transformation matrix A^{\prime} can be written in the form $A^{\prime}=B A B^{-1}$
- Affine transformation: is any transformation that preserves collinearity and ratios of distances. It can be a composition of two functions: a translation and a linear mapping
- Projective transformation: maps lines to lines (but does not necessarily preserve parallelism). Any plane projective transformation can be expressed by an invertible matrix in homogeneous coordinates (to be defined...)

Scaling (S)

$$
\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \times\binom{ x}{y}=\binom{s_{x} x}{s_{y} y}
$$

Note that this operation happens w.r.t. to the origin of the coordinate system - the kitten has been "stretched" in x - and y-axis but also the position of its center has moved in the same proportion

Scaling (S)

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right] \times\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- If s_{x}, s_{y} and s_{z} are equal, we talk about uniform scaling s: $s=s_{x}, s_{y}, s_{z}$
- It can be represented by a simple scalar multiplication of the vector
- If the contrary is true, then it's non-uniform scaling
- Note: $s_{x}, s_{y}, s_{z} \geq 0$ (otherwise see mirror transformation)

Multiple points to transform

- Rather than transform individual points, all operations can be done in one step:

$$
\begin{aligned}
& \binom{x_{1}^{\prime}}{y_{1}^{\prime}}=T \times\binom{ x_{1}}{y_{1}} \\
& \binom{x_{2}^{\prime}}{y_{2}^{\prime}}=T \times\binom{ x_{2}}{y_{2}}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
x_{1}^{\prime} & x_{2}^{\prime} & \cdots \\
y_{1}^{\prime} & y^{\prime} & \ldots
\end{array}\right]=T \times\left[\begin{array}{lll}
x_{1} & x_{2} & \cdots \\
y_{1} & y_{2} & \cdots
\end{array}\right]
$$

Basic Transformations

Shear (H)

- Shear transformation H acts along the axes of the coordinate system:

Reflection / Mirror (M)

- Mirror transformation M with respect to one of the axes
- Note: changes orientation

$$
\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \times\binom{ x}{y}
$$

Can you guess the formula for mirroring w.r.t. x and y ?

Rotation (R)

$$
\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \times\binom{ x}{y}=\binom{x \cos \theta-y \sin \theta}{y \cos \theta+x \sin \theta}
$$

Note that this operation happens w.r.t. to the origin of the coordinate system - the kitten has been rotated around it's center but also its center moved with respect to the origin of the coordinate frame

Basic Transformations

Rotation around origin in 2D

- Representation in polar (or spherical for 3D) coordinates:
- $x=r \cos \alpha$
- $y=r \sin \alpha$

$$
\begin{aligned}
& x^{\prime}=r \cos (\alpha+\theta) \\
& y^{\prime}=r \sin (\alpha+\theta)
\end{aligned}
$$

- Well know property
- $\cos (\alpha+\theta)=\cos \alpha \cos \theta-\sin \alpha \sin \theta$
- $\sin (\alpha+\theta)=\cos \alpha \sin \theta-\sin \alpha \cos \theta$
- Gives
- $x^{\prime}=(r \cos \alpha) \cos \theta-(r \sin \alpha) \sin \theta=x \cos \theta-y \sin \theta$
- $y^{\prime}=(r \cos \alpha) \sin \theta-(r \sin \alpha) \cos \theta=x \sin \theta+y \cos \theta$
- Or in matrix form

$$
\binom{x^{\prime}}{y^{\prime}}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \times\binom{ x}{y}=\binom{x \cos \theta-y \sin \theta}{y \cos \theta+x \sin \theta}
$$

Basic Transformations

Rotation around major axes in 3D

- Rotation around z axis: $R_{\theta}^{Z}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
- Rotation around y axis: $R_{\theta}^{y}=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$
- Rotation around x axis: $R_{\theta}^{x}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$
- 2 D rotation around the respective axis
- Assumes right-handed system, mathematically positive direction
- Be aware of change in sign on sines in R_{θ}^{y}
- Due to relative orientation of other axis

Basic Transformations

Properties of Rotation Transform

- $R_{0}=I$
- $\operatorname{det}(R)$ is always 1 (volume preservation)
- R is always invertible
- Also, $R^{-1}=R^{\top}$
- Transpose of a rotation matrix produces a rotation in the opposite direction
- $R_{\theta}^{-1}=R_{-\theta}=R_{\theta}^{\top}$
- Columns and rows of a rotation matrix are always orthogonal (they constitute the rotated coordinate axis!)
- Rotations around the same axis are commutative:
- $R_{\theta} \times R_{\alpha}=R_{\theta+\alpha}=R_{\alpha} \times R_{\theta}$
- Rotations around different axes are not commutative
- $R_{\theta}^{x} \times R_{\alpha}^{y} \neq R_{\alpha}^{y} \times R_{\theta}^{x}$
- Order does matter for rotations around different axes

Vector vs coordinate frame transformation

- In general: transformation of a vector is equivalent to mathematical transformation of its coordinates
- Useful insight: rotating a vector is equivalent to rotating the coordinate frame in the opposite sense

Basic Transformations

Vector vs coordinate frame transformation

- The reason it works:
- Original vector:
(component in direction of the frame's x axis $\left.\begin{array}{c}\text { component in direction of } y \text { axis }\end{array}\right)$
- New vector:

Combining transformations

- Multiple transformation matrices can be used to transform a point:

$$
\vec{x}^{\prime}=M \times T \times S \times \vec{x}
$$

- The effect of this is to apply their transformations one after the other, from right to left. In the example above, the result is:

$$
\vec{x}^{\prime}=(M \times(T \times(S \times \vec{x})))
$$

- The result is exactly the same if we multiply the matrices first, to form a single transformation matrix:

$$
\vec{x}^{\prime}=(M \times T \times S) \times \vec{x}
$$

- In general all the transformations may be written as a single transformation matrix:

$$
\vec{x}^{\prime}=\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \times\left(\begin{array}{c}
y \\
x \\
z
\end{array}\right)
$$

Multiply matrices to concatenate

- Matrix-matrix multiplication is not commutative
- Order of transformations matters!

Fluent Interface

- OpenRT CTransform class support fluent interface
- Every method of the class return an instance of that class

CTransform transform;
Mat $t=$ transform.scale(0.5f).translate(Vec3f(3, 1, 0)).get(); solidQuad.transform(t);

CTransform transform;
Mat $t=$ transform.translate(Vec3f(3, 1, 0)).scale(0.5f).get(); solidQuad.transform(t);

Linear transformations are combinations of ...

- Scale
- Rotation
- Shear
- Mirror

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \times\left(\begin{array}{l}
y \\
x \\
z
\end{array}\right)
$$

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
... but why have we never mentioned translation?

Homogeneous Coordinates

Dealing with Translation

- Translation is a conceptually very simple operation: just add a vector to the vector representing a point
- Translation is not linear and thus does not have a 2×2 matrix representation
- A modified way of expressing coordinates will help us with the this problem:
- let us add an extra field w with a constant value of 1 to our point representation:

$$
\binom{x}{y}^{T} \quad\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)^{T}
$$

- We have to adjust our transform matrices to deal with it:

$$
\begin{gathered}
S_{s}=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right] \longmapsto S_{s}=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \\
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \longrightarrow R_{\theta}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Homogeneous coordinates

Translation (T)

- Thanks to this, we can introduce a multiplicative translation transform:

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \times\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right)
$$

Translation Transform

Properties

- Identity
- $T_{0}=I$
- Commutative (special case)
- $T_{t} \times T_{t}=T_{t+t^{\prime}}=T_{t} \times T_{t}$
- Inverse
- $T_{t}^{-1}=T_{-t}$

Rotation and Translation

- Now we can include affine transforms into our calculations! For example, to move the element to the center, rotate it and move it back to its original point:
- $T_{t} \times R_{\theta} \times T_{-t}$

Rotation and Translation

Rotate object around a point x and axis z

- Point x is called pivot point
- $R_{x, \theta}^{Z}=T_{x} \times R_{\theta}^{Z} \times T_{-x}$ operation allows to rotate an shape around some point
- Rotation, as expressed in the initial form, is executed around $(0,0)$

Step 1: translate by - x

Step 2: rotate
$B^{\prime \prime \prime}=T_{x} \times B^{\prime \prime}$

Step 4: translate by x

Rotation Around Arbitrary Axis

Rotate around a given point p and vector $r(|r|=1)$

- Translate so that p is in the origin
- Transform with rotation $R=M^{\top}$
- M given by orthonormal basis (k, s, t) such that k becomes the x axis
- Requires construction of a orthonormal basis (k, s, t)
- Rotate around x axis
- Transform back with M^{-1}
- Translate back to point p

$$
R(p, r, \theta)=T_{p} \times M(k) \times R_{\theta}^{x} \times M^{\top}(k) \times T_{-p}
$$

```
// k - rotation axis; theta - angle of rotation in degrees
CTransform CTransform::rotate(const Vec3f& k, float theta) const
{
    Mat t = Mat::eye(3, 3, CV_32FC1);
    theta *= Pif/180;
    float cos_theta = cosf(theta);
    float sin_theta = sinf(theta);
    float x = k[0];
    float y = k[1];
    float z = k[2];
    t[0, 1] = (1 - cos_theta) * x * y - sin_theta * z;
    t[0, 0] = cos_theta + (1 - cos_theta) * x * x;
    t[0, 2] = (1 - cos_theta) * x * z + sin_theta * y;
    t[1, 0] = (1 - cos_theta) * y * x + sin_theta * z;
    t[1, 1] = cos_theta + (1 - cos_theta) * y * y;
    t[1, 2] = (1 - cos_theta) * y * z - sin_theta * x;
    t[2, 0] = (1 - cos_theta) * z * x - sin_theta * y;
    t[2, 1] = (1 - cos_theta) * z * y + sin_theta * x;
    t[2, 2] = cos_theta + (1 - cos_theta) * z * z;
    return CTransform(t * m_t);
}
```


Affine Space

Basic mathematical concepts

- The affine space A
- In contrast to vector space, affine space operates with objects of 2 types:
- Vectors: represent directions: they always have $w=0$
- Points: represent locations
- Defined via its associated vector space V
- $a, b \in A \Leftrightarrow \exists \vec{v} \in V: \vec{v}=b-a$
- Operations on affine space A
- Subtraction of two points yields a vector
- No addition of points (it is not clear what the some of two points would mean)
- But: Addition of points and vectors:
- $a+\vec{v}=b \in A^{3}$
- Distance
- $\operatorname{dist}(a, b)=|a-b|$

Affine Space

Basic mathematical concepts

- The affine space A
- In contrast to vector space, affine space operates with objects of 2 types:
- Vectors: represent directions: they always have $w=0$
- Points: represent locations
- Difference between 2 points:
- $\vec{v}=b-a=\left(\begin{array}{c}b_{x} \\ b_{y} \\ 1\end{array}\right)-\left(\begin{array}{c}a_{x} \\ a_{y} \\ 1\end{array}\right)=\left(\begin{array}{c}b_{x}-a_{x} \\ b_{y}-a_{y} \\ 0\end{array}\right)$

- Consequently: Translations do not affect vectors!
- $T_{t} \times \vec{v}=\left[\begin{array}{ccc}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right] \times\left(\begin{array}{c}v_{x} \\ v_{y} \\ 0\end{array}\right)=\left(\begin{array}{c}v_{x} \\ v_{y} \\ 0\end{array}\right)=\vec{v}$

Affine Space

Homogeneous Coordinates for 3D

- Homogeneous embedding of \mathbb{R}^{3} into the affine 4D space $A\left(\mathbb{R}^{4}\right)$
- Mapping a point into homogeneous space
- $\mathbb{R}^{3} \ni\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \rightarrow\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right) \in A\left(\mathbb{R}^{4}\right)$
- Mapping back by dividing through fourth component
- $A\left(\mathbb{R}^{4}\right) \ni\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right) \rightarrow\left(\begin{array}{l}x / w \\ y / w \\ z / w\end{array}\right) \in \mathbb{R}^{3}$

Consequence

- This allows to represent affine transformations as 4×4 matrices
- Mathematical trick
- Convenient representation to express rotations and translations as matrix multiplications

