
Computer Graphics
Sergey Kosov

Lecture 12:

Transformations

Contents

1. Introduction

2. Basic Transformations

3. Concatenation of transformations

4. Homogeneous Coordinates

5. Affine Space

© 2020 Sergey Kosov
1

Introduction

Vector Space
• The vector space 𝑉 in 3D over the real numbers

Ԧ𝑣 =

𝑣1
𝑣2
𝑣3

∈ 𝑉3 = ℝ3

• Vectors in nD are written as 𝑛 × 1 matrices

• Vectors describe directions – not positions

• All vectors conceptually start from the origin of the coordinate system

• 3 linear independent vectors create a basis

Ԧ𝑒1, Ԧ𝑒2, Ԧ𝑒3 =
1
0
0

,
0
1
0

,
0
0
1

• Any 3D vector can be represented uniquely with coordinates

Ԧ𝑣 = 𝑣1 Ԧ𝑒1 + 𝑣1 Ԧ𝑒1 + 𝑣1 Ԧ𝑒1 𝑣1, 𝑣2, 𝑣3 ∈ ℝ

2

𝑜 Ԧ𝑒1

Ԧ𝑒2

Ԧ𝑒3

Introduction

Vector Space - Metric
• Standard scalar product a.k.a. dot or inner product

• Measure lengths
Ԧ𝑣 2 = Ԧ𝑣 ∙ Ԧ𝑣 = 𝑣1

2 + 𝑣2
2 + 𝑣3

2

• Compute angles
Ԧ𝑣 ∙ 𝑢 = Ԧ𝑣 𝑢 cos 𝑢, 𝑣

• Projection of vectors onto other vectors

𝑢 cos 𝜃 =
Ԧ𝑣 ∙ 𝑢

Ԧ𝑣
=

Ԧ𝑣 ∙ 𝑢

Ԧ𝑣 ∙ Ԧ𝑣

3

𝑢 cos 𝜃
Ԧ𝑣

𝑢

𝜃

Introduction

Orthonormal basis
• Unit length vectors

• Ԧ𝑒1 = Ԧ𝑒2 = Ԧ𝑒3 = 1

• Orthogonal to each other

• Ԧ𝑒𝑖 ∙ Ԧ𝑒𝑗 = 𝛿𝑖𝑗

Handedness of the coordinate system

• Two options: Ԧ𝑒1 × Ԧ𝑒2 = Ԧ𝑒3

• Positive: Right-handed (RHS)

• Negative: Left-handed (LHS)

• Example: Screen Space

• Typical: 𝑋 goes right, 𝑌 goes up (thumb & index finger, respectively)

• In a RHS: 𝑍 goes out of the screen (middle finger)

• Be careful:

• Most systems nowadays (including OpenRT) use a right handed coordinate system

• But some are not (e.g. RenderMan) → can cause lots of confusion

4

Introduction

Transformation
• Matrix multiplication can be used to transform vectors through multiplication: 𝑥’ = 𝐴𝑥

• A matrix used in this way is called a transformation matrix

• Simplest is scaling:

5

𝑠𝑥 0
0 𝑠𝑦

×
𝑥
𝑦 =

𝑠𝑥𝑥
𝑠𝑦𝑦

Introduction

Transformations
• Transformations can be divided into many classes

• Rigid / Euclidian transformation: preserves the Euclidean distance between every pair of points. The
rigid transformations include rotations, translations, reflections, or their combination

• Similarity transformation: is an angle-preserving transformation whose transformation matrix 𝐴′ can be
written in the form 𝐴’ = 𝐵 𝐴 𝐵−1

• Affine transformation: is any transformation that preserves collinearity and ratios of distances. It can be
a composition of two functions: a translation and a linear mapping

• Projective transformation: maps lines to lines (but does not necessarily preserve parallelism). Any plane
projective transformation can be expressed by an invertible matrix in homogeneous coordinates (to be
defined...)

6

Basic Transformations

Scaling (S)

7

Note that this operation happens w.r.t. to the origin of the coordinate system – the
kitten has been “stretched” in x- and y-axis but also the position of its center has
moved in the same proportion

𝑥′
𝑦′

=
𝑠𝑥 0
0 𝑠𝑦

×
𝑥
𝑦 =

𝑠𝑥𝑥
𝑠𝑦𝑦

rt::CTransform::scale()

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Basic Transformations

Scaling (S)

• If 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧 are equal, we talk about uniform scaling s: 𝑠 = 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧

• It can be represented by a simple scalar multiplication of the vector

• If the contrary is true, then it’s non-uniform scaling

• Note: 𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧 ≥ 0 (otherwise see mirror transformation)

8

𝑥′
𝑦′

𝑧′

=

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 𝑠𝑧

×
𝑥
𝑦
𝑧

𝑥

𝑦

𝑥

𝑦

𝑥′
𝑦′

=
2 0
0 1

×
𝑥
𝑦

rt::CTransform::scale()

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Transformations

Multiple points to transform
• Rather than transform individual points, all operations can be done in one step:

9

𝑥′1
𝑦′1

= 𝑇 ×
𝑥1
𝑦1

𝑥′2
𝑦′2

= 𝑇 ×
𝑥2
𝑦2

𝑥′1 𝑥′2 ⋯

𝑦′1 𝑦′2 …
= 𝑇 ×

𝑥1 𝑥2 ⋯
𝑦1 𝑦2 …

Basic Transformations

Shear (H)
• Shear transformation H acts along the axes of the coordinate system:

10

𝑥

𝑦

𝑥

𝑦

𝑥

𝑦

𝑥

𝑦

𝑥′
𝑦′

=
1 ℎ𝑥
0 1

×
𝑥
𝑦

𝑥′
𝑦′

=
1 0
ℎ𝑦 1 ×

𝑥
𝑦

Why did this point not move?

Answer:because it’s an invariant
point of this transformation!General form:

𝑥′
𝑦′

𝑧′

=

1 ℎ𝑥𝑦 ℎ𝑥𝑧
ℎ𝑦𝑥 1 ℎ𝑦𝑧
ℎ𝑧𝑥 ℎ𝑧𝑦 1

×
𝑥
𝑦
𝑧

Basic Transformations

Reflection / Mirror (M)
• Mirror transformation M with respect to one of the axes

• Note: changes orientation

11

𝑥 𝑥

𝑥

𝑦

𝑥

𝑦

𝑥′
𝑦′

=
1 0
0 −1

×
𝑥
𝑦

𝑥′
𝑦′

=
−1 0
0 1

×
𝑥
𝑦

𝑦 𝑦

Can you guess the formula for mirroring w.r.t. 𝑥 and 𝑦?

rt::CTransform::mirror()

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Basic Transformations

Rotation (R)

12

𝜃 = 45°

𝑥′
𝑦′

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

×
𝑥
𝑦 =

𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑦 cos 𝜃 + 𝑥 sin 𝜃

Note that this operation happens w.r.t. to the origin of the coordinate system – the kitten has been rotated
around it’s center but also its center moved with respect to the origin of the coordinate frame

rt::CTransform::rotate()

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Basic Transformations

Rotation around origin in 2D
• Representation in polar (or spherical for 3D) coordinates:

• 𝑥 = 𝑟 cos𝛼

• 𝑦 = 𝑟 sin 𝛼

• Well know property

• cos 𝛼 + 𝜃 = cos𝛼 cos 𝜃 − sin 𝛼 sin 𝜃

• s𝑖𝑛 𝛼 + 𝜃 = cos𝛼 sin 𝜃 − sin 𝛼 cos 𝜃

• Gives

• 𝑥′ = 𝑟 cos 𝛼 cos 𝜃 − 𝑟 sin 𝛼 sin 𝜃 = 𝑥 cos 𝜃 − 𝑦 sin 𝜃

• 𝑦′ = 𝑟 cos𝛼 sin 𝜃 − 𝑟 sin 𝛼 cos 𝜃 = 𝑥 sin 𝜃 + 𝑦 cos 𝜃

• Or in matrix form

𝑥′
𝑦′

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

×
𝑥
𝑦 =

𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑦 cos 𝜃 + 𝑥 sin 𝜃

13

𝑥′ = 𝑟 cos(𝛼 + 𝜃)

𝑦′ = 𝑟 sin(𝛼 + 𝜃)

Basic Transformations

Rotation around major axes in 3D

• Rotation around z axis: 𝑅𝜃
𝑧 =

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

• Rotation around y axis: 𝑅𝜃
𝑦
=

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

• Rotation around x axis: 𝑅𝜃
𝑥 =

1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

• 2D rotation around the respective axis

• Assumes right-handed system, mathematically positive direction

• Be aware of change in sign on sines in 𝑅𝜃
𝑦

• Due to relative orientation of other axis

14

Basic Transformations

Properties of Rotation Transform
• 𝑅0 = 𝐼

• det(𝑅) is always 1 (volume preservation)

• 𝑅 is always invertible

• Also, 𝑅−1 = 𝑅⊺

• Transpose of a rotation matrix produces a rotation in the opposite direction

• 𝑅𝜃
−1 = 𝑅−𝜃 = 𝑅𝜃

⊺

• Columns and rows of a rotation matrix are always orthogonal (they constitute the rotated coordinate
axis!)

• Rotations around the same axis are commutative:

• 𝑅𝜃 × 𝑅𝛼 = 𝑅𝜃+𝛼 = 𝑅𝛼 × 𝑅𝜃

• Rotations around different axes are not commutative

• 𝑅𝜃
𝑥 × 𝑅𝛼

𝑦
≠ 𝑅𝛼

𝑦
× 𝑅𝜃

𝑥

• Order does matter for rotations around different axes

15

Basic Transformations

Vector vs coordinate frame transformation
• In general: transformation of a vector is equivalent to mathematical transformation of its coordinates

• Useful insight: rotating a vector is equivalent to rotating the coordinate frame in the opposite sense

16

𝜃 = 45°

𝜃 = −45°𝑂

𝐹

𝐹

𝑂

𝑂′

𝑂

𝐹′

Basic Transformations

Vector vs coordinate frame transformation
• The reason it works:

• Original vector:

component in direction of the frame’s x axis
component in direction of y axis

• New vector:

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 ∙ 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑥 𝑎𝑥𝑖𝑠

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 ∙ 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑦 𝑎𝑥𝑖𝑠

17

𝜃 = −45°

𝜃 = 45°

𝑂

𝐹

𝐹

𝑂

𝑂′

𝑂

𝐹′

Transformations

Combining transformations
• Multiple transformation matrices can be used to transform a point:

Ԧ𝑥′ = 𝑀 × 𝑇 × 𝑆 × Ԧ𝑥

• The effect of this is to apply their transformations one after the other, from right to left. In the example
above, the result is:

Ԧ𝑥′ = 𝑀 × 𝑇 × 𝑆 × Ԧ𝑥

• The result is exactly the same if we multiply the matrices first, to form a single transformation matrix:

Ԧ𝑥′ = 𝑀 × 𝑇 × 𝑆 × Ԧ𝑥

• In general all the transformations may be written as a single transformation matrix:

Ԧ𝑥′ =
𝑥′
𝑦′

𝑧′

=

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

×
𝑦
𝑥
𝑧

18

Concatenation of Transformations

Multiply matrices to concatenate
• Matrix-matrix multiplication is not commutative

• Order of transformations matters!

19

Concatenation of Transformations

Fluent Interface
• OpenRT CTransform class support fluent interface

• Every method of the class return an instance of that class

20

CTransform transform;
Mat t = transform.scale(0.5f).translate(Vec3f(3, 1, 0)).get();
solidQuad.transform(t);

CTransform transform;
Mat t = transform.translate(Vec3f(3, 1, 0)).scale(0.5f).get();
solidQuad.transform(t);

https://en.wikipedia.org/wiki/Fluent_interface

All 2D Linear Transformations

Linear transformations are combinations of ...
• Scale

• Rotation

• Shear

• Mirror

Properties of linear transformations:
• Origin maps to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

21

… but why have we never
mentioned translation?

𝑥′
𝑦′

𝑧′

=
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

×
𝑦
𝑥
𝑧

Homogeneous Coordinates

Dealing with Translation
• Translation is a conceptually very simple operation: just add a vector to the vector representing a point

• Translation is not linear and thus does not have a 2 × 2 matrix representation

• A modified way of expressing coordinates will help us with the this problem:

• let us add an extra field 𝑤 with a constant value of 1 to our point representation:

𝑥
𝑦

𝑇 𝑥
𝑦
1

𝑇

• We have to adjust our transform matrices to deal with it:

22

𝑆𝑠 =
𝑠𝑥 0
0 𝑠𝑦

𝑆𝑠 =
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑅𝜃 =
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑅𝜃 =
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

Homogeneous coordinates

Translation (T)
• Thanks to this, we can introduce a multiplicative translation transform:

23

𝑥′
𝑦′
1

=
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

×
𝑥
𝑦
1

=
𝑥 + 𝑡𝑥
𝑦 + 𝑡𝑦
1

𝑥

𝑦

𝑥

𝑦

𝐵

𝐵′ = 𝑇1,1/2 × 𝐵

rt::CTransform::translate()

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Translation Transform

Properties
• Identity

• 𝑇0 = 𝐼

• Commutative (special case)

• 𝑇𝑡 × 𝑇𝑡′ = 𝑇𝑡+𝑡′ = 𝑇𝑡′ × 𝑇𝑡

• Inverse

• 𝑇𝑡
−1 = 𝑇−𝑡

Rotation and Translation
• Now we can include affine transforms into our calculations! For example, to move the element to the

center, rotate it and move it back to its original point:

• 𝑇𝑡 × 𝑅𝜃 × 𝑇−𝑡

24

Rotation and Translation

Rotate object around a point 𝑥 and axis 𝑧
• Point 𝑥 is called pivot point

• 𝑅𝑥,𝜃
𝑧 = 𝑇𝑥 × 𝑅𝜃

𝑧 × 𝑇−𝑥 operation allows to rotate an shape around some point

• Rotation, as expressed in the initial form, is executed around (0, 0)

25

𝐵

𝐵’ = 𝑇−𝑥 ×𝐵

𝐵’’ = 𝑅𝜃
𝑧 × 𝐵’

𝐵′′′ = 𝑇𝑥 × 𝐵’’

Rotation Around Arbitrary Axis

Rotate around a given point 𝑝 and vector 𝑟 (|𝑟| = 1)
• Translate so that 𝑝 is in the origin

• Transform with rotation 𝑅 = 𝑀⊺

• 𝑀 given by orthonormal basis (𝑘, 𝑠, 𝑡) such that 𝑘 becomes the 𝑥 axis

• Requires construction of a orthonormal basis (𝑘, 𝑠, 𝑡)

• Rotate around 𝑥 axis

• Transform back with M-1

• Translate back to point 𝑝

26

x

z

k

t

s
x

z

k
t

s k

t

MTy y M y

z

s

x

Figure without
translation aspect

𝑅 𝑝, 𝑟, 𝜃 = 𝑇𝑝 ×𝑀 𝑘 × 𝑅𝜃
𝑥 ×𝑀⊺ 𝑘 × 𝑇−𝑝

Rotation Around Arbitrary Axis

// k – rotation axis; theta – angle of rotation in degrees
CTransform CTransform::rotate(const Vec3f& k, float theta) const
{

Mat t = Mat::eye(3, 3, CV_32FC1);
theta *= Pif/180;
float cos_theta = cosf(theta);
float sin_theta = sinf(theta);
float x = k[0];
float y = k[1];
float z = k[2];

t[0, 1] = (1 - cos_theta) * x * y - sin_theta * z;
t[0, 0] = cos_theta + (1 - cos_theta) * x * x;
t[0, 2] = (1 - cos_theta) * x * z + sin_theta * y;

t[1, 0] = (1 - cos_theta) * y * x + sin_theta * z;
t[1, 1] = cos_theta + (1 - cos_theta) * y * y;
t[1, 2] = (1 - cos_theta) * y * z - sin_theta * x;

t[2, 0] = (1 - cos_theta) * z * x - sin_theta * y;
t[2, 1] = (1 - cos_theta) * z * y + sin_theta * x;
t[2, 2] = cos_theta + (1 - cos_theta) * z * z;

return CTransform(t * m_t);
}

27

Affine Space

Basic mathematical concepts
• The affine space 𝐴

• In contrast to vector space, affine space operates with objects of 2 types:

• Vectors: represent directions: they always have 𝑤 = 0

• Points: represent locations

• Defined via its associated vector space 𝑉

• 𝑎, 𝑏 ∈ 𝐴 ⟺ ∃ Ԧ𝑣 ∈ 𝑉 : Ԧ𝑣 = 𝑏 − 𝑎

• Operations on affine space 𝐴

• Subtraction of two points yields a vector

• No addition of points (it is not clear what the some of two points would mean)

• But: Addition of points and vectors:

• 𝑎 + Ԧ𝑣 = 𝑏 ∈ 𝐴3

• Distance

• 𝑑𝑖𝑠𝑡 𝑎, 𝑏 = 𝑎 − 𝑏

28

Ԧ𝑣

𝑎

𝑏

Affine Space

Basic mathematical concepts
• The affine space 𝐴

• In contrast to vector space, affine space operates with objects of 2 types:

• Vectors: represent directions: they always have 𝑤 = 0

• Points: represent locations

• Difference between 2 points:

• Ԧ𝑣 = 𝑏 − 𝑎 =
𝑏𝑥
𝑏𝑦
1

−

𝑎𝑥
𝑎𝑦
1

=
𝑏𝑥 − 𝑎𝑥
𝑏𝑦 − 𝑎𝑦

0

• Consequently: Translations do not affect vectors!

• 𝑇𝑡 × Ԧ𝑣 =
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

×

𝑣𝑥
𝑣𝑦
0

=

𝑣𝑥
𝑣𝑦
0

= Ԧ𝑣

29

Ԧ𝑣

𝑎

𝑏

Affine Space

Homogeneous Coordinates for 3D
• Homogeneous embedding of ℝ3into the affine 4D space 𝐴(ℝ4)

• Mapping a point into homogeneous space

• ℝ3 ∋
𝑥
𝑦
𝑧

→

𝑥
𝑦
𝑧
1

∈ 𝐴 ℝ4

• Mapping back by dividing through fourth component

• 𝐴 ℝ4 ∋

𝑥
𝑦
𝑧
𝑤

→

𝑥/𝑤
𝑦/𝑤
𝑧/𝑤

∈ ℝ3

Consequence
• This allows to represent affine transformations as 4x4 matrices

• Mathematical trick

• Convenient representation to express rotations and translations as matrix multiplications

30

