Lecture 12;

Transformations

Contents

1.

2
3
4,
5

Introduction
Basic Transformations
Concatenation of transformations

Homogeneous Coordinates

. Affine Space

© 2020 Sergey Kosov

Computer Graphics
Sergey Kosov

Introduction ‘7

Vector Space
* The vector space V in 3D over the real numbers
U1
v=|(v2|eV3=R3
U3

Vectors in nD are written as n X 1 matrices

Vectors describe directions — not positions

» All vectors conceptually start from the origin of the coordinate system

3 linear independent vectors create a basis

1\ /0\ /0 ¢ 4
(8,8,83=140],[1],[0 Z,
0 0 1
* Any 3D vector can be represented uniquely with coordinates / >
L 0 8,
vV =ve +vie1 + V€ V1,V,,V3 ER

Introduction

Vector Space - Metric

» Standard scalar product a.k.a. dot or inner product

* Measure lengths

 Compute angles

-

v -u = |v||u| cos(u, v)

* Projection of vectors onto other vectors
> =

Sy

Introduction

Orthonormal basis

* Unit length vectors
* lell=lé;l=1él=1
* Orthogonal to each other
. 8 -8 =0
Handedness of the coordinate system
* Two options: 51 X 52 = 53
e Positive: Right-handed (RHS)
* Negative: Left-handed (LHS)
* Example: Screen Space
» Typical: X goes right, Y goes up (thumb & index finger, respectively)
* |naRHS: Z goes out of the screen (middle finger)
* Be careful:

* Most systems nowadays (including OpenRT) use a right handed coordinate system

* But some are not (e.g. RenderMan) — can cause lots of confusion

Introduction

Transformation

* Matrix multiplication can be used to transform vectors through multiplication: x’ = Ax

* A matrix used in this way is called a transformation matrix

0
T s]*G)=(sy)

* Simplest is scaling:

Introduction “7
Transformations

* Transformations can be divided into many classes

: similarity plolestx\ e

translation
P 4

Euclldean attme

\‘ .\‘

* Rigid / Euclidian transformation: preserves the Euclidean distance between every pair of points. The
rigid transformations include rotations, translations, reflections, or their combination

* Similarity transformation: is an angle-preserving transformation whose transformation matrix A’ can be
written in the form A’ = BAB™!

» Affine transformation: is any transformation that preserves collinearity and ratios of distances. It can be
a composition of two functions: a translation and a linear mapping

* Projective transformation: maps lines to lines (but does not necessarily preserve parallelism). Any plane
projective transformation can be expressed by an invertible matrix in homogeneous coordinates (to be
defined...)

Basic Transformations ‘7

Scaling (S) rt::CTransform: :scale()

) =[5 51x6)=(s)

Note that this operation happens w.r.t. to the origin of the coordinate system — the
kitten has been “stretched” in x- and y-axis but also the position of its center has
moved in the same proportion

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Scaling (S)

Basic Transformations

0

Sz

X

X

y
Z

rt::CTransform: :scale()

e Ifs,, Sy and s, are equal, we talk about uniform scaling s: s = s,, Sy, Sz

* It can be represented by a simple scalar multiplication of the vector

* |f the contrary is true, then it’s non-uniform scaling

* Note: sy, Sy, S; = 0 (otherwise see mirror transformation)

()= I

X
y

)

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Transformations

Multiple points to transform

e Rather than transform individual points, all operations can be done in one step:

() =7G.)
1
(y2) =G

Basic Transformations % ’

Shear (H)

e Shear transformation H acts along the axes of the coordinate system:

N
%\ R‘
N—
|
S -
=
X
VN
< xR
N—"

X
(x,) ’ 1 O] (x)
= X
/ : 3
y hy 117 \y

X

o 1 hyy hy, X Why did this point not move?
General form: <y’> =|hyx 1 hy,|x ()’) _ q

o gy hzy 1 7 jUOIIBWJO)SUBIY SIYY JO JUIO

1uelleAul ue s, 1l asnedaq (JIaMsuy
10

Basic Transformations .

Reflection / Mirror (M) rt::CTransform: :mirror()

* Mirror transformation M with respect to one of the axes

« Note: changes orientation
y y 4
) =lo 21xG) h —
X

G)=1o 1xG)

=

>

X

=

Can you guess the formula for mirroring w.r.t. x and y?

11

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Basic Transformations ‘7

Rotation (R) rt::CTransform: :rotate()

(x’) _ [cos@ —sinf] (X) _ (x cos 6 —ysin@)
' sinf cos® y ycos8 + xsinf

Note that this operation happens w.r.t. to the origin of the coordinate system — the kitten has been rotated
around it’s center but also its center moved with respect to the origin of the coordinate frame

12

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Basic Transformations

Rotation around origin in 2D

* Representation in polar (or spherical for 3D) coordinates:
s X =rcosa x' =rcos(a+6)

* y=rsina y' =rsin(a + 0)

* Well know property
* cos(a+60) =cosacosf —sinasinb

* sin(a +0) =cosasinf — sina cos

* Qives
e x' =(rcosa)cosf — (rsina)sinf = xcosd — ysinf

« ¥y ' =(rcosa)sinf — (rsina)cosf = xsinf + y cos 8

 Orin matrix form

(x’) _ [cos@ —sinf] (X) _ (xCOSH —ysin@)
y' sin@ cos6 y ycos8 + xsin 0

13

Basic Transformations

Rotation around major axes in 3D

cosf —sinf 0
Rotation around z axis: Rg = |sin@ cosf O
0 0 1

cosf 0 siné
0 1 0
—sind 0 cosé@

Rotation around y axis: Rz’

1 0 0
Rotation around x axis: Rg =10 cosf@ —sinéb

0O sin® cosf

2D rotation around the respective axis
e Assumes right-handed system, mathematically positive direction
Be aware of change in sign on sines in Rg

 Due to relative orientation of other axis

14

Basic Transformations

Properties of Rotation Transform

RO=

I

det(R) is always 1 (volume preservation)

R is always invertible

Transpose of a rotation matrix produces a rotation in the opposite direction

Also, R~1 = RT

Rg' =R_g =Ry

Columns and rows of a rotation matrix are always orthogonal (they constitute the rotated coordinate

axis!)

Rotations around the same axis are commutative:

. ReXRa=R9+a=RaXR9

Rotations around different axes are not commutative

* R} XR) #R)XR}

Order does matter for rotations around different axes

15

Basic Transformations ‘\7

Vector vs coordinate frame transformation

* |In general: transformation of a vector is equivalent to mathematical transformation of its coordinates
» Useful insight: rotating a vector is equivalent to rotating the coordinate frame in the opposite sense

A

16

Basic Transformations

Vector vs coordinate frame transformation

* The reason it works:

e Qriginal vector:

(component in direction of the frame’s x axis) A
component in direction of y axis

* New vector:

((ori ginal vector) - (the new x axis))
(original vector) - (the new y axis)

17

Transformations ‘7

Combining transformations

* Multiple transformation matrices can be used to transform a point:

X =MXTXSXX

* The effect of this is to apply their transformations one after the other, from right to left. In the example
above, the result is:

f’z(Mx(Tx(Sxa?)))

* The result is exactly the same if we multiply the matrices first, to form a single transformation matrix:

X' =(MXTxXxS)xXx

* In general all the transformations may be written as a single transformation matrix:

x' a b c y
x' = (y') =|d e f|x (x)
7' g h i z

18

Concatenation of Transformations ‘: ,

Multiply matrices to concatenate

* Matrix-matrix multiplication is not commutative

s T 5
* Order of transformations matters! A f(x) 3.1(50.5(x))

f(xa) f(x1)

>
;
A J(x) = Sos(T5,1(x))
f(xg).f(ixz)
f(xo) f(x1)
> : : : >
;

19

Concatenation of Transformations

Fluent Interface

e OpenRT CTransform class support fluent interface

* Every method of the class return an instance of that class

CTransform transform;

Mat t = transform.scale(©.5f).translate(Vec3f(3, 1, 0)).get();
solidQuad.transform(t);

CTransform transform;

Mat t = transform.translate(Vec3f(3, 1, 0)).scale(0.5f).get();
solidQuad.transform(t);

A F(x) =T31(S05(x))
f(x3)g o (x2)
o .
f(x%o) flxa)
i

A f(x) = So5(13,1(x))
f(x3) @@ [(x2)
f(x0)® 9 f(x1)
4 } ¥ >
s 20

https://en.wikipedia.org/wiki/Fluent_interface

All 2D Linear Transformations ‘\7

Linear transformations are combinations of ...

Scale

Rotation x' a b c y
Shear (y’) =ld e f|X (x)
Mirror z g hoi ‘

Properties of linear transformations:

Origin maps to origin
Lines map to lines
Parallel lines remain parallel ... but why have we never
: mentioned translation?
Ratios are preserved

Closed under composition

21

Homogeneous Coordinates ‘7

Dealing with Translation

* Translation is a conceptually very simple operation: just add a vector to the vector representing a point
* Translation is not linear and thus does not have a 2 X 2 matrix representation
* A modified way of expressing coordinates will help us with the this problem:

* |let us add an extra field w with a constant value of 1 to our point representation:

B - ()

1

* We have to adjust our transform matrices to deal with it:

s 0 s, 0 O

Ss=19o S] Ss=[0 s, ©

d 0 0 1
0 0 cosf@ —sinf 0
Rg:lC(_)S —sin Rg =|sinf@ cosf O
sinf cos@ 0 0 1

22

Homogeneous coordinates ‘7

Translation (T) rt::CTransform: :translate()

* Thanks to this, we can introduce a multiplicative translation transform:

!

X 1 0 ¢, X X+ T,
y |=10 1 ¢, x(y>= y+t,

1 0 0 1 1 1
y y A
:> . B"=Ty1/, XB
B
—>
X

X

23

https://github.com/Project-10/OpenRT/blob/master/modules/core/Transform.cpp

Translation Transform ‘7

Properties
* |dentity
b T() = I

* Commutative (special case)
* Ty XTy =Tewer = T X Tt
* Inverse

s Tit=T,

Rotation and Translation

* Now we can include affine transforms into our calculations! For example, to move the element to the
center, rotate it and move it back to its original point:

d TtXRQXT_t

24

Rotation and Translation

Rotate object around a point x and axis z

e Point x is called pivot point

* Rig =T, X Rg XT_, operation allows to rotate an shape around some point

* Rotation, as expressed in the initial form, is executed around (0, 0)

A A
X
L]
X
Step 1: translate by - x
< < ' : ; —
B=T,XB A
v x Y X
) .
Step 2: rotate
. . . > <
| B" = R; X B’ |
v

BIII — Tx X Bn

Step 4: translate by x

—p

25

Rotation Around Arbitrary Axis

Rotate around a given point p and vectorr (|r| = 1)

Translate so that p is in the origin

Transform with rotation R = M'
e M given by orthonormal basis (k, s, t) such that k becomes the x axis
* Requires construction of a orthonormal basis (k, s, t)

Rotate around x axis

Transform back with M-1

Translate back to point p

x"
XVV

t Z Z

»

Ll

X

Figure without
translation aspect

R(p,1,0) =T, Xx M(k) x Rg x M" (k) x T_,,

26

Rotation Around Arbitrary Axis

// k - rotation axis; theta - angle of rotation in degrees
CTransform CTransform::rotate(const Vec3f& k, float theta) const
{

Mat t = Mat::eye(3, 3, CV_32FC1l);

theta *= Pif/180;

float cos_theta = cosf(theta);

float sin_theta = sinf(theta);

float x = k[@];

float y = k[1];

float z = k[2];

t[0@, 1] = (1 - cos_theta) * x * y - sin_theta * z;
t[0@, @] = cos_theta + (1 - cos_theta) * x * x;
t[0@, 2] = (1 - cos_theta) * x * z + sin_theta * y;

t[1, 0] = (1 - cos_theta) * y * x + sin_theta * z;
t[1, 1] = cos_theta + (1 - cos_theta) * y * y;
t[1, 2] = (1 - cos_theta) * y * z - sin_theta * x;

t[2, 0] = (1 - cos_theta) * z * x - sin_theta * y;
t[2, 1] = (1 - cos_theta) * z * y + sin_theta * x;
t[2, 2] = cos_theta + (1 - cos_theta) * z * z;

return CTransform(t * m_t);

Affine Space

Basic mathematical concepts

* The affine space A
* In contrast to vector space, affine space operates with objects of 2 types:
* Vectors: represent directions: they always have w = 0
* Points: represent locations
* Defined via its associated vector space V
e aqbeA 3WeV:v=b—a
* QOperations on affine space A
* Subtraction of two points yields a vector
* No addition of points (it is not clear what the some of two points would mean)
* But: Addition of points and vectors:
e a+v=D>b €A
* Distance

* dist(a,b) = |a — b|

A}

28

Affine Space

Basic mathematical concepts

* The affine space A
* In contrast to vector space, affine space operates with objects of 2 types:
* Vectors: represent directions: they always have w = 0
* Points: represent locations

* Difference between 2 points:
bx Ay bx — Ay
S — _ a
. v-b—a-(by)—<ay>— by — a,
1 1 0

* Consequently: Translations do not affect vectors!

1 0 ¢, Uy Ux
. Ttxﬁz[o 1 ty]x<vy>=<vy)=ﬁ
0 0 1 0 0

A}

29

Affine Space

Homogeneous Coordinates for 3D

« Homogeneous embedding of R3into the affine 4D space A(R%)

* Mapping a point into homogeneous space

X
.]R33<y>—> 7) e AR
z 1

* Mapping back by dividing through fourth component
X

x/w
e A(R%) 3 32’ S y/w | e r3
W z/w
Consequence

e This allows to represent affine transformations as 4x4 matrices
* Mathematical trick

e Convenient representation to express rotations and translations as matrix multiplications

30

