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History of Animation

Before Animation
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Shahr-e Sukhteh, Iran 3200 BCE



History of Animation

Before Animation
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Tomb of Khnumhotep, Egypt 2400 BCE



History of Animation

The Phenakistoscope
ÅFirst systematic truly moving animation - the phenakistoscope(to be viewed in the mirror through the 

slit in the spinning disc)
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PHENAKISTOSCOPE - Tribute to Joseph Plateau - - YouTube

https://www.youtube.com/watch?v=UqwkdlwmHig


History of Animation

First Film
ÅUsed for research purposes 

in order to answer the question: do horses life all four limbs off the ground in gallop?
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Sallie Gardner at a Gallop (1878) - YouTube

https://www.youtube.com/watch?v=JaumV0FgwBg


How Does it Work?

Computer animation is a sequence of still images rapidly changing at a fixed rate

The mechanism:

ÅRetinal persistence (our light receptors hold the perceived state over a couple of milliseconds)  
scientifically disproved

ÅBeta phenomenon: visual memory in brain - not eyeball

ÅPhi phenomenonΥ ōǊŀƛƴ ŀƴǘƛŎƛǇŀǘŜǎΣ ƎƛǾƛƴƎ ǎŜƴǎŜ ƻŦ Ƴƻǘƛƻƴ όƛǘΩǎ DŜǎǘŀƭǘ ǇǎȅŎƘƻƭƻƎȅ ŀƎŀƛƴΗύ
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Animation basics: The optical illusion 
of motion - TED-Ed - YouTube

Phi Phenomenon - YouTube

https://www.youtube.com/watch?v=V8A4qudmsX0
https://www.youtube.com/watch?v=L2-swEdDXsc


How Does it Work?

Motion
ÅMotion is a pre-attentive phenomenon

ÅҦ It has a stronger power to render things distinguishable for us than color, shape, ...

ÅBack to Human Visual System: our eyes are more sensitive to motion at periphery

ÅThatΩs why we are prone to see άghostsέ in the corner of our visual field

ÅMotion triggers the orienting response / reflex (an organism's immediate response to a change in its 
environment, when that change is not sudden enough to elicit the startle reflex)

ÅMotion parallax provide 3-D cue (like stereopsis) ςit means that we can understand depth in moving 
scenes despite not having the stereo-visual observation
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Animation Technology

ά¢ƘŜ 5ƛǎƴŜȅ ǿƻǊƪŦƭƻǿέ
ÅSenior artist draws keyframes

ÅAssistant draws in-betweens (tedious and labor intensive process)

In modern animation software the workflow is similar 
ÅYou, as an artist decide on the key moments of the movement, and the software interpolates the 

geometry in the timesteps in between
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Keyframing

Basic idea:
ÅSpecify important events only

ÅFills in the rest via interpolation / approximation

Key frames / Events:
ÅPosition

ÅColor

ÅLight intensity

ÅCamera zoom

Åetc.
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WhatCanbeAnimated?

Camera
ÅPosition

ÅDirection

ÅFocallength
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Light Source
ÅPosition

ÅDirection

ÅRadiant Power

Geometry
ÅPosition

ÅAffine Transform

ÅRotation

ÅMotion

ÅScaling

ÅShearing

Shading
ÅTransparency 

ÅTextures

ÅDiffuse properties

Åetc.

Example
ÅPositionis one of the most common characteristics, which is provided via Vec3f values

Å If the sequence contains 240 frames, for object Awe can assign e.g.frames 0, 100 and 240 as 
keyframes and for object B- frames 10, 20 and 200 

ÅNextweneedto provide3 positionsfor objectAand3 positionsfor objectB for every keyframe,e.g.

ÅA.pos 1 = Vec 3f( 7, 0, 1); 
A.pos 2 = Vec 3f( 10, 0, 10); 

ÅFor the frames lying in-between 0 and 100, interpolate the position of object Ausing A.pos 1 and 
A.pos 2

ÅByanalogyproceedwith objectBandall other frames



Interpolation via Polynomial Curves

Curve descriptions
ÅExplicit: 

Åώ Ὢὼ

Åώὼ ὶ ὼ restricted domain

Å Implicit: 

ÅὊὼȟώ π

Åὼ ώ ὶ π unknown solution set

ÅParametric: 

ÅØ Ὢὸȟώ Ὢὸ

Å
ὼὸ ὶÃÏÓς“ὸ
ώὸ ὶÓÉÎς“ὸ

ȟ ὸɴ πȟρ flexibility and ease of use

Polynomials
Åὼὸ ὥ ὥὸ ὥὸ ὥὸ Ễ

ÅAvoids complicated functions (e.g.ὴέύȟÅØÐȟÓÉÎȟίήὶὸ)

ÅUse simple polynomials of low degree
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Interpolation via Polynomial Curves

Monomial basis
ÅSimple basis: ρȟὸȟὸȟȣ(ὸusually in πȟρ)

Polynomial representation

ὼὸ ὥ ὥὸ ὥὸ ὥὸ Ễ

ώὸ ὦ ὦὸ ὦὸ ὦὸ Ễ

ᾀὸ ὧ ὧὸ ὧὸ ὧὸ Ễ

ὖὸ
ὼὸ
ώὸ
ᾀὸ

ὥ
ὦ
ὧ
ὸ

ÅCoefficients can be determined from a sufficient number of constraints (e.g.interpolation of given 
points)

ÅGiven (ὲ ρ) parameter values ὸand points ὖ

ÅSolution of a linear system in the ὃ - possible, but inconvenient

Matrix representation

ὖὸẌ ὸ ὸ Ễ ὸ ρ

ὥ ὦ ὧ
ὥ ὦ ὧ
ể
ὥ

ể
ὦ

ể
ὧ
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Degree

Coefficients ὴᶰᴙ

Monomials



Derivatives ofaPolynomial Curve

Derivative 
ÅPolynomial of degree (ὲ ρ)

Ὠὖὸ

Ὠὸ
ὖᴂὸ ὲὸ ὲ ρὸ Ễ ρπ

ὥ ὦ ὧ
ὥ ὦ ὧ
ể
ὥ

ể
ὦ

ể
ὧ

ÅDerivativeat a point is equalto the tangentvectorat that point

Example
ὖὸ ÃÏÓς“ὸÓÉÎς“ὸ

ὶ π
π ὶ

ὖᴂὸ ς“ɇÓÉÎς“ὸς“ɇÃÏÓς“ὸ
ὶ π
π ὶ

ὼ ὸ ς“ὶɇÓÉÎς“ὸ
ώ ὸ ς“ὶɇÃÏÓς“ὸ

Ὠώ

Ὠὼ

ώᴂὸ

ὼᴂὸ

ς“ὶɇÃÏÓς“ὸ

ς“ὶɇÓÉÎς“ὸ
ÃÔÇς“ὸ
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Derivatives

Continuity and smoothness between parametric curves
ÅThere are two criteria for continuity:

ÅGeometric continuity Ὃ

ÅParametric continuityὅ

Å If curveὖends in the same point where curve ὖ starts, it is said that we have both Ὃ and 
ὅcontinuity
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ὖ ὸ

Notcontinuous
ὖ ρ ὖ ὸ

Continuous
ὖ ρ ὖ π

ὖ ὸ

ὖ ὸ

ὖ ὸ



Derivatives

Continuity and smoothness between parametric curves
Å If the tangent vectors at the joint are equally directed ὖᴂρ Ὧὖᴂπ

Å It issaidthat wehavegeometric continuity Ὃ

Å If the tangent vectors at the joint are equal ὖᴂρ ὖᴂπ

Å It is said that we have parametric continuity ὅ

ÅSimilar for higher derivatives

15

Ὃ -continuous

Ὃ + tangent vectors parallel
ὖᴂρ Ὧὖᴂπ

ὅ-continuous

ὅ + tangent vectors parallel
ὖᴂρ ὖᴂπ

ὖ ρ

ὖ π
ὖ ρ

ὖ π
ὖ ὸ

ὖ ὸ

ὖ ὸ

ὖ ὸ



Lagrange Interpolation

Given a set of key-points:
Å ὸȟᴆὴȟὸɴ ᴙȟᴆὴᶰᴙ

Find a polynomial ὖsuch that:
Å Ὥᶅὖὸ ᴆὴ
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ὸȟᴆὴ
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Lagrange Interpolation

Given a set of points:
Å ὸȟᴆὴȟὸɴ ᴙȟᴆὴᶰᴙ

Find a polynomial ὖsuch that:
Å Ὥᶅὖὸ ᴆὴ

For each point associate a
Lagrange basis polynomial:

ὒ ὸ
ὸ ὸ

ὸ ὸ

where

ὒ ὸ ‏
ρ Ὥ Ὦ
π έὸὬὩὶύὭίὩ
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ὸȟᴆὴ
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Given a set of points:
Å ὸȟᴆὴȟὸɴ ᴙȟᴆὴᶰᴙ

Find a polynomial ὖsuch that:
Å Ὥᶅὖὸ ᴆὴ

For each point associate a
Lagrange basis polynomial:

ὒ ὸ
ὸ ὸ

ὸ ὸ

where

ὒ ὸ ‏
ρ Ὥ Ὦ
π έὸὬὩὶύὭίὩ

Add the Lagrange basiswith points as weights:

ὖὸ ὒ ὸᴆὴ ὖὸẌ ὒ ὒ Ễ ὒ

ὴȟ ὴȟ ὴȟ
ὴȟ ὴȟ ὴȟ
ể

ὴ ȟ

ể
ὴ ȟ

ể
ὴ ȟ

Lagrange Interpolation
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Lagrange Interpolation

For each point associate a Lagrange basis polynomial:

ὒ ὸ
ὸ ὸ

ὸ ὸ

Simple Linear Interpolation
ÅὝ ὸȟὸ

ὒ ὸ
ὸ ὸ

ὸ ὸ

ὒ ὸ
ὸ ὸ

ὸ ὸ

Simple Quadratic Interpolation
ÅὝ ὸȟὸȟὸ

ὒ ὸ
ὸ ὸ

ὸ ὸ

ὸ ὸ

ὸ ὸ

ὒ ὸ
ὸ ὸ

ὸ ὸ

ὸ ὸ

ὸ ὸ

ὒ ὸ
ὸ ὸ

ὸ ὸ

ὸ ὸ

ὸ ὸ

ὸ

1 ὒ ὸ
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ὒ ὸ

ὸ

1

-1

ὸ ὸ ὸ

ὒ ὸ
ὒ ὸ

ὒ ὸ



Problems

Problems with a single polynomial
ÅDegree depends on the number of interpolation constraints

ÅStrong overshooting for high degree (ὲ χ)

ÅProblems with smooth joints

ÅNumerically unstable

ÅNo local changes
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Splines

Functions for interpolation & approximation
ÅStandard curve and surface primitives in geometric modeling

ÅKey frame and in-betweens in animations

ÅFiltering and reconstruction of images

Historically
ÅName for a tool in ship building

ÅFlexible metal strip that tries to stay straight

ÅWithin computer graphics:

ÅPiecewise polynomial function

21
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Linear Interpolation

Linear splines
ÅDefined by two points: ᴆὴȟᴆὴ

ÅSearching for ὖὸsuch that:

Åὖπ ᴆὴ

Åὖρ ᴆὴ

ÅDegree of ὖis ρ

ÅBasis:

ÅὝ ὸ ρ ὸ

ÅὝ ὸ ὸ

ὖὸ ᴆὴὝ ὸ ᴆὴὝ ὸ ὖὸẌ ρ ὸ ὸ
ᴆὴẌ

ᴆὴẌ

22

Linearbasis

1 ὸ

1 Ὕ1 Ὕ2



Linear Interpolation

1 ὸ ὸ

Linearbasis

ὸ 1

monomialbasisὓ

0 1
1 1

1 1
1 0
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ὖὸẌ ὓẗ
ρ ρ
ρ π

ẗ
ᴆὴẌ

ᴆὴẌ



Linear Interpolation

ὅ-continuous
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ὖὸẌ ὓẗ
ρ ρ
ρ π

ẗ
ᴆὴẌ

ᴆὴẌ



HermiteInterpolation

Cubic splines
ÅDefined by two points: ᴆὴȟᴆὴ and two tangents: ᴆ†ȟᴆ†

ÅSearching for ὖὸsuch that:

Åὖπ ᴆὴ

Åὖᴂπ ᴆ†

Åὖᴂρ ᴆ†

Åὖρ ᴆὴ

ÅDegree of ὖis σ

ÅBasis:

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ὖὸ ὖπὌ ὸ ὖ πὌ ὸ ὖ ρὌ ὸ ὖρὌ ὸ
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HermiteInterpolation

0Ὄ
3 ὸ 1Ὄ

3 ὸ 2Ὄ
3 ὸ 3Ὄ

3 ὸὸ3 ὸ2 ὸ 1

Ὄ

Ὄ 1
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Cubic splines
ÅDefined by two points: ᴆὴȟᴆὴ and two tangents: ᴆ†ȟᴆ†

ÅSearching for ὖὸsuch that:

Åὖπ ᴆὴ

Åὖᴂπ ᴆ†

Åὖᴂρ ᴆ†

Åὖρ ᴆὴ

ÅDegree of ὖis σ

ÅBasis:

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ὖὸẌ ὓẗὌẗ

ᴆὴẌ

ᴆ†Ẍ

ᴆ†Ẍ

ᴆὴẌ

ὓẗὌẗὋ



HermiteInterpolation
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Cubic splines
ÅDefined by two points: ᴆὴȟᴆὴ and two tangents: ᴆ†ȟᴆ†

ÅSearching for ὖὸsuch that:

Åὖπ ᴆὴ

Åὖᴂπ ᴆ†

Åὖᴂρ ᴆ†

Åὖρ ᴆὴ

ÅDegree of ὖis σ

ÅBasis:

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὖὸẌ ὸ ὸ ὸ ρẗὌẗὋ

ÅὖᴂὸẌ σὸ ςὸ ρ πẗὌẗὋ

Å ᴆὴẌ ὖπẌ π π π ρẗὌẗὋ

Åᴆ†Ẍ ὖᴂπẌ π π ρ πẗὌẗὋ

Åᴆ†Ẍ ὖᴂρẌ σ ς ρ πẗὌẗὋ

Å ᴆὴẌ ὖρẌ ρ ρ ρ ρẗὌẗὋ

ᴆὴẌ

ᴆ†Ẍ

ᴆ†Ẍ

ᴆὴẌ

π π
π π
σ
ρ
ς
ρ

π ρ
ρ π
ρ
ρ
π
ρ

ẗὌẗ

ᴆὴẌ

ᴆ†Ẍ

ᴆ†Ẍ

ᴆὴẌ



HermiteInterpolation
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Cubic splines
ÅDefined by two points: ᴆὴȟᴆὴ and two tangents: ᴆ†ȟᴆ†

ÅSearching for ὖὸsuch that:

Åὖπ ᴆὴ

Åὖᴂπ ᴆ†

Åὖᴂρ ᴆ†

Åὖρ ᴆὴ

ÅDegree of ὖis σ

ÅBasis:

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

ÅὌ ὸ ȩ

Ὄ

π π
π π
σ
ρ
ς
ρ

π ρ
ρ π
ρ
ρ
π
ρ

ς ρ
σ ς
π
ρ

ρ
π

ρ ς
ρ σ
π
π

π
π



0Ὄ
3

3Ὄ
3

2Ὄ
3

Ὄ1
3

HermiteInterpolation
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Cubic splines
ÅDefined by two points: ᴆὴȟᴆὴ and two tangents: ᴆ†ȟᴆ†

ÅSearching for ὖὸsuch that:

Åὖπ ᴆὴ

Åὖᴂπ ᴆ†

Åὖᴂρ ᴆ†

Åὖρ ᴆὴ

ÅDegree of ὖis σ

ÅBasis:

ÅὌ ὸ ρ ὸ ρ ςὸ

ÅὌ ὸ ὸρ ὸ

ÅὌ ὸ ὸ ὸ ρ

ÅὌ ὸ σ ςὸὸ

Ὄ

ς ρ
σ ς
π
ρ

ρ
π

ρ ς
ρ σ
π
π

π
π

Ὄ ὸ Ὄ ὸ Ὄ ὸ Ὄ ὸ



0Ὄ
3

3Ὄ
3

2Ὄ
3

Ὄ1
3

HermiteInterpolation
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Cubic splines
ÅBasis:

ÅὌ ὸ ρ ὸ ρ ςὸ

ÅὌ ὸ ὸρ ὸ

ÅὌ ὸ ὸ ὸ ρ

ÅὌ ὸ σ ςὸὸ

Properties of HermiteBasis Functions
ÅὌ (Ὄ ) interpolates smoothly from 1 to 0 

ÅὌ and Ὄ have zero derivative at ὸ πand ὸ ρ

ÅNo contribution to derivative (Ὄ , Ὄ )

ÅὌ and Ὄ are zero at ὸ πand ὸ ρ

ÅNo contribution to position (Ὄ ,Ὄ )

ÅὌ (Ὄ ) has slope 1 at ὸ π(ὸ ρ)

ÅUnit factor for specified derivative vector

Ὄ

ς ρ
σ ς
π
ρ

ρ
π

ρ ς
ρ σ
π
π

π
π

Ὄ ὸ Ὄ ὸ Ὄ ὸ Ὄ ὸ



Examples: Hermite Interpolation
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.ŞȊƛŜǊ

32

.ŞȊƛŜǊsplines
ÅDefined by 4 points: 

Åὦȟὦ: start and end points

Åὦȟὦ: control points that are approximated

ÅSearching for ὖὸsuch that:

Åὖπ ὦ

Åὖᴂπ σὦ ὦ

Åὖᴂρ σὦ ὦ

Åὖρ ὦ

ÅDegree of ὖis σ



.ŞȊƛŜǊ
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.ŞȊƛŜǊsplines
ÅDefined by 4 points: 

Åὦȟὦ: start and end points

Åὦȟὦ: control points that are approximated

ÅSearching for ὖὸsuch that:

Åὖπ ὦ

Åὖᴂπ σὦ ὦ

Åὖᴂρ σὦ ὦ

Åὖρ ὦ

ÅDegree of ὖis σ
ὴẌ

ὸẌ

ὸẌ

ὴẌ

ρ π
σ σ
π
π
π
π

π π
π π
σ
π
σ
ρ

ὦẌ

ὦẌ

ὦẌ

ὦẌ

ὖὸẌ ὓẗὌẗὝ ẗὋ



.ŞȊƛŜǊsplines
ÅDefined by 4 points: 

Åὦȟὦ: start and end points

Åὦȟὦ: control points that are approximated

ÅSearching for ὖὸsuch that:

Åὖπ ὦ

Åὖᴂπ σὦ ὦ

Åὖᴂρ σὦ ὦ

Åὖρ ὦ

ÅDegree of ὖis σ

ÅBasis:

Åὄ ὸ ρ ὸ

Åὄ ὸ σὸρ ὸ

Åὄ ὸ σὸ ρ ὸ

Åὄ ὸ ὸ

ÅBernstein polynomial:

Åὄ ὸ
ὲ
Ὥ
ὸρ ὸ ὖὸ ὦὄ ὸ ὦὄ ὸ ὦὄ ὸ ὦὄ ὸ

.ŞȊƛŜǊ

ὄ= Ὄẗ ὝὄὌ=

1 3 3 1
3 φ 3 0
σ 3 0 0

1 0 0 0
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ὄ ὸ ὄ ὸ

ὄ ὸ ὄ ὸ



.ŞȊƛŜǊProperties

Advantages:
ÅEnd point interpolation

ÅTangents explicitly specified

ÅSmooth joints are simple

Åὖȟὖȟὖ collinear O G1 continuous

Åὖ ὖ ὖ ὖᴼC1 continuous

ÅGeometric meaning of control points

ÅAffine invariance

ÅConvex hull property

ÅFor π ὸ ρȡὄ ὸ π

ÅSymmetry: ὄ ὸ ὄ ρ ὸ

Disadvantages
ÅSmooth joints need to be maintained explicitly

ÅAutomatic in B-Splines (and NURBS)
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DeCasteljauAlgorithm

Direct evaluation of the basis functions ὖὸ Вὦὄ ὸ
ÅSimple but expensive

Use recursion
ÅRecursive definition of the basis functions

ὄ ὸ
ὲ
Ὥ
ὸρ ὸ ὸὄ ὸ ρ ὸὄ ὸ

Å Inserting this once yields:

ὖὸ ὦὄ ὸ ὦὄ ὸ

ÅWith the new .ŞȊƛŜǊpoints given by the recursion

ὦ ὸ ὦ

ὦ ὸ ὸὦ ὸ ρ ὸὦ ὸ
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DeCasteljau Algorithm

DeCasteljauAlgorithm:
ÅRecursive degree reduction of the Bezier curve by using the recursion formula for the Bernstein 

polynomials

ὖὸ ὦὄ ὸ ὦὄ ὸ Ễ ὦ ὸɇρ

ὦ ὸ ὸὦ ὸ ρ ὸὦ ὸ

Example:
Åὸ πȢυ
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DeCasteljau Algorithm

Subdivision using the deCasteljauAlgorithm
ÅTake boundaries of the deCasteljautriangle as new control points  for left / right portion of the curve

Extrapolation
ÅBackwards subdivision

ÅReconstruct triangle from one side
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Catmull-Rom-Splines

Goal
ÅSmooth (C1)-joints between (cubic) spline segments

Algorithm
ÅTangents given by neighboring points Pi-1 Pi+1

ÅConstruct (cubic) Hermitesegments

Advantage
ÅArbitrary number of control points

Å Interpolation without overshooting

ÅLocal control
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Catmull-Rom-Splines

40

Catmull-Rom splines
ÅDefined by 4 points: 

Åὧȟὧ: start and end points

Åὧȟὧ: neighbor segment points

ÅSearching for ὖὸsuch that:

Åὖπ ὧ

Åὖᴂπ ὧ ὧ

Åὖᴂρ ὧ ὧ

Åὖρ ὧ

ÅDegree of ὖis σ



Catmull-Rom-Splines
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Catmull-Rom splines
ÅDefined by 4 points: 

Åὧȟὧ: start and end points

Åὧȟὧ: neighbor segment points

ÅSearching for ὖὸsuch that:

Åὖπ ὧ

Åὖᴂπ ὧ ὧ

Åὖᴂρ ὧ ὧ

Åὖρ ὧ

ÅDegree of ὖis σ

ὴẌ

ὸẌ

ὸẌ

ὴẌ

π ρ
πȢυ π
π
π

πȢυ
π

π π
πȢυ π
π
ρ
πȢυ
π

ὧẌ

ὧẌ

ὧẌ

ὧẌ

ὖὸẌ ὓẗὌẗὝ ẗὋ



Catmull-Rom-Splines
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Catmull-Rom splines
ÅDefined by 4 points: 

Åὧȟὧ: start and end points

Åὧȟὧ: neighbor segment points

ÅSearching for ὖὸsuch that:

Åὖπ ὧ

Åὖᴂπ ὧ ὧ

Åὖᴂρ ὧ ὧ

Åὖρ ὧ

ÅDegree of ὖis σ

ÅBasis:

Åὅ ὸ ὸρ ὸ

Åὅ ὸ ὸ ρ σὸ ςὸ ς

Åὅ ὸ ὸσὸ τὸ ρ

Åὅ ὸ ὸ ὸ ρ

ὅ ὌẗὝ
ρ

ς

ρ σ
ς υ
ρ
π

π
ς

σ ρ
τ ρ
ρ
π

π
π



Catmull-Rom-Splines

Catmull-Rom-Spline
ÅPiecewise polynomial curve

ÅFour control points per segment

ÅFor ὲcontrol points we obtain ὲ σ polynomial segments

Application
ÅSmooth interpolation of a given sequence of points

ÅKey frame animation, camera movement, etc.

ÅOnly G1-continuity

ÅControl points should be equidistant in time
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Choice of Parameterization

Problem
ÅOften only the control points are given

ÅHow to obtain a suitable parameterization ὸ?

Example: Chord-Length Parameterization

ὸ π

ὸ ὨὭίὸὖ ὖ

ÅArbitrary up to a constant factor

Warning
ÅDistances are not affine invariant !

ÅShape of curves changes under transformations !!
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Parameterization

Chord-Length versus uniform Parameterization
ÅAnalog: Think ὖὸas a moving object with mass that may  overshoot

45

Uniform

Chord-Length



B-Splines

Goal
ÅSpline curve with local control and high continuity

Given
ÅDegree: ὲ

ÅControl points: ὴȟȣȟὴ (Control polygon, ά ὲ ρ)

ÅKnots: ὸȟȣȟὸ (Knotvector, weaklymonotonic)

ÅThe knot vector defines the parametric locations where segments join

B-Spline Curve

ὖὸ ὔ ὸὴ

ÅContinuity:

ÅCn-1 at simple knots

ÅCn-k at knot with multiplicity Ὧ

46



B-Spline Basis Functions

Recursive Definition

47

0

N
i

i

i

Nn-1 (t)
i+1

i+n+1 i+1

i+n+1n-1  

i

i+n
t -t

t -t
(t)-

t -t

t -tiN n (t)=

ì
ë1 if ti <t <ti+1

í0 otherwise
N (t)=

0 1 2 3 4

0 1 2 3 4 5

N0
0 N1

0 N2
0 N3

0 N4
0

N0
1 N1

1 N2
1 N3

1

5 Uniform Knotvector



B-Spline Basis Functions

Recursive Definition
ÅDegree increases in every step

ÅSupport increases by one knot interval
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