Computer Graphics
 Sergey Kosov

Lecture 13:

Animation

Contents

1. History of Animation
2. Key Frames and Key Points
3. Parametric Curves
4. Lagrange Interpolation
5. Hermite Splines
6. Bezier Splines
7. DeCasteljau Algorithm
8. Parameterization
9. B-Splines
© 2020 Sergey Kosov

Before Animation

Shahr-e Sukhteh, Iran 3200 BCE

Tomb of Khnumhotep, Egypt 2400 BCE

History of Animation

The Phenakistoscope

- First systematic truly moving animation - the phenakistoscope (to be viewed in the mirror through the slit in the spinning disc)

PHENAKISTOSCOPE - Tribute to Joseph Plateau - - YouTube

History of Animation

First Film

- Used for research purposes
in order to answer the question: do horses life all four limbs off the ground in gallop?

Sallie Gardner at a Gallop (1878) - YouTube

Computer animation is a sequence of still images rapidly changing at a fixed rate The mechanism:

- Retinal persistence (our light receptors hold the perceived state over a couple of milliseconds) scientifically disproved
- Beta phenomenon: visual memory in brain - not eyeball
- Phi phenomenon: brain anticipates, giving sense of motion (it's Gestalt psychology again!)

Animation basics: The optical illusion of motion - TED-Ed - YouTube

Phi Phenomenon - YouTube

How Does it Work?

Motion

- Motion is a pre-attentive phenomenon
- \rightarrow It has a stronger power to render things distinguishable for us than color, shape, ...
- Back to Human Visual System: our eyes are more sensitive to motion at periphery
- That's why we are prone to see "ghosts" in the corner of our visual field
- Motion triggers the orienting response / reflex (an organism's immediate response to a change in its environment, when that change is not sudden enough to elicit the startle reflex)
- Motion parallax provide 3-D cue (like stereopsis) - it means that we can understand depth in moving scenes despite not having the stereo-visual observation

Animation Technology

"The Disney workflow"

- Senior artist draws keyframes
- Assistant draws in-betweens (tedious and labor intensive process)

In modern animation software the workflow is similar

- You, as an artist decide on the key moments of the movement, and the software interpolates the geometry in the timesteps in between

Basic idea:

- Specify important events only
- Fills in the rest via interpolation / approximation

Key frames / Events:

- Position
- Color
- Light intensity
- Camera zoom
- etc.

Camera

- Position
- Direction
- Focal length

Light Source

- Position
- Direction
- Radiant Power

Geometry

- Position
- Affine Transform
- Rotation
- Motion

Shading

- Transparency
- Textures
- Diffuse properties
- etc.
- Scaling
- Shearing

Example

- Position is one of the most common characteristics, which is provided via Vec3f values
- If the sequence contains 240 frames, for object A we can assign e.g. frames 0,100 and 240 as keyframes and for object B - frames 10, 20 and 200
- Next we need to provide 3 positions for object A and 3 positions for object B for every keyframe, e.g.
- A.pos1 = $\operatorname{Vec} 3 f(7,0,1) ;$
A.pos2 $=\operatorname{Vec} 3 f(10,0,10) ;$
- For the frames lying in-between 0 and 100, interpolate the position of object A using A. pos1 and A. pos2
- By analogy proceed with object B and all other frames

Interpolation via Polynomial Curves

Curve descriptions

- Explicit:
- $y=f(x)$
- $y(x)= \pm \sqrt{r^{2}-x^{2}} \quad$ restricted domain
- Implicit:
- $F(x, y)=0$
- $x^{2}+y^{2}-r^{2}=0$
unknown solution set
- Parametric:
- $\mathrm{x}=f_{x}(t), y=f_{y}(t)$
- $\begin{aligned} x(t) & =r \cos 2 \pi t \\ y(t) & =r \sin 2 \pi t^{\prime}\end{aligned} \quad t \in[0,1] \quad$ flexibility and ease of use

Polynomials

- $x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\cdots$
- Avoids complicated functions (e.g. pow(), $\exp (), \sin (), \operatorname{sqrt}())$
- Use simple polynomials of low degree

Monomial basis

- Simple basis: $1, t, t^{2}, \ldots(t$ usually in $[0,1])$

Polynomial representation

$$
\begin{array}{ll}
x(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\cdots & \text { Degree } \longleftarrow \text { Coefficients } p_{i} \in \mathbb{R}^{3} \quad P(t)=\left(\begin{array}{c}
x(t) \\
y(t) \\
y(t) \\
z(t)
\end{array}\right)=b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+\cdots \\
z(t)=c_{0}+c_{1} t+c_{0}^{n}\left(\begin{array}{c}
a_{i} \\
b_{i} t^{2} \\
c_{i}
\end{array}\right) t^{i}+c_{3} t^{3}+\cdots & \text { Monomials } \longleftarrow
\end{array}
$$

- Coefficients can be determined from a sufficient number of constraints (e.g. interpolation of given points)
- Given $(n+1)$ parameter values t_{i} and points P_{i}
- Solution of a linear system in the A_{i} - possible, but inconvenient

Matrix representation

$$
P(t)^{\top}=\left(\begin{array}{lllll}
t^{n} & t^{n-1} & \ldots & t & 1
\end{array}\right)\left(\begin{array}{ccc}
a_{n} & b_{n} & c_{n} \\
a_{n-1} & b_{n-1} & c_{n-1} \\
\vdots & \vdots & \vdots \\
a_{0} & b_{0} & c_{0}
\end{array}\right)
$$

Derivatives of a Polynomial Curve

Derivative

- Polynomial of degree $(n-1)$

$$
\frac{d P(t)}{d t}=P^{\prime}(t)=\left(\begin{array}{lllll}
n t^{n-1} & (n-1) t^{n-2} & \cdots & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
a_{n} & b_{n} & c_{n} \\
a_{n-1} & b_{n-1} & c_{n-1} \\
\vdots & \vdots & \vdots \\
a_{0} & b_{0} & c_{0}
\end{array}\right)
$$

- Derivative at a point is equal to the tangent vector at that point

Example

$$
\begin{gathered}
P(t)=\left(\begin{array}{ll}
\cos 2 \pi t & \sin 2 \pi t
\end{array}\right)\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right) \\
P^{\prime}(t)=\left(\begin{array}{cc}
-2 \pi \cdot \sin 2 \pi t & 2 \pi \cdot \cos 2 \pi t
\end{array}\right)\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right) \\
x^{\prime}(t)=-2 \pi r \cdot \sin 2 \pi t \\
y^{\prime}(t)=2 \pi r \cdot \cos 2 \pi t \\
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{2 \pi r \cdot \cos 2 \pi t}{-2 \pi r \cdot \sin 2 \pi t}=-\operatorname{ctg} 2 \pi t
\end{gathered}
$$

Continuity and smoothness between parametric curves

- There are two criteria for continuity:
- Geometric continuity G^{0}
- Parametric continuity C^{0}
- If curve P_{1} ends in the same point where curve P_{2} starts, it is said that we have both G^{0} and C^{0} continuity

Not continuous
$P_{1}(1) \neq P_{2}(t)$

Continuous
$P_{1}(1)=P_{2}(0)$

Derivatives

Continuity and smoothness between parametric curves

- If the tangent vectors at the joint are equally directed $P^{\prime}{ }_{1}(1)=k P^{\prime}{ }_{2}(0)$
- It is said that we have geometric continuity G^{1}
- If the tangent vectors at the joint are equal $P^{\prime}{ }_{1}(1)=P_{2}^{\prime}(0)$
- It is said that we have parametric continuity C^{1}
- Similar for higher derivatives

Given a set of key-points:

- $\left(t_{i}, \vec{p}_{i}\right), t_{i} \in \mathbb{R}, \vec{p}_{i} \in \mathbb{R}^{d}$

Find a polynomial P such that:

- $\forall i P\left(t_{i}\right)=\vec{p}_{i}$

Given a set of points:

- $\left(t_{i}, \vec{p}_{i}\right), t_{i} \in \mathbb{R}, \vec{p}_{i} \in \mathbb{R}^{d}$

Find a polynomial P such that:

- $\forall i P\left(t_{i}\right)=\vec{p}_{i}$

For each point associate a Lagrange basis polynomial:

$$
L_{i}^{n}(t)=\prod_{\substack{j=0 \\ i \neq j}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}}
$$

where
$L_{i}^{n}\left(t_{j}\right)=\delta_{i j}=\left\{\begin{array}{cc}1 & i=j \\ 0 & \text { otherwise }\end{array}\right.$

Given a set of points:

- $\left(t_{i}, \vec{p}_{i}\right), t_{i} \in \mathbb{R}, \vec{p}_{i} \in \mathbb{R}^{d}$

Find a polynomial P such that:

- $\forall i P\left(t_{i}\right)=\vec{p}_{i}$

For each point associate a Lagrange basis polynomial:

$$
L_{i}^{n}(t)=\prod_{\substack{j=0 \\ i \neq j}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}}
$$

where

$$
L_{i}^{n}\left(t_{j}\right)=\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

Add the Lagrange basis with points as weights:

$$
P(t)=\sum_{i=0}^{n} L_{i}^{n}(t) \vec{p}_{i} \quad P(t)^{\top}=\left(\begin{array}{llll}
L_{0}^{n} & L_{1}^{n} & \cdots & L_{n-1}^{n}
\end{array}\right)\left(\begin{array}{ccc}
p_{0, x} & p_{0, y} & p_{0, z} \\
p_{1, x} & p_{1, y} & p_{1, z} \\
\vdots & \vdots & \vdots \\
p_{n-1, x} & p_{n-1, y} & p_{n-1, z}
\end{array}\right)
$$

For each point associate a Lagrange basis polynomial:

$$
L_{i}^{n}(t)=\prod_{\substack{j=0 \\ i \neq j}}^{n} \frac{t-t_{j}}{t_{i}-t_{j}}
$$

Simple Linear Interpolation

- $T=\left\{t_{0}, t_{1}\right\}$

$$
\begin{aligned}
& L_{0}^{1}(t)=\frac{t-t_{1}}{t_{0}-t_{1}} \\
& L_{1}^{1}(t)=\frac{t-t_{0}}{t_{1}-t_{0}}
\end{aligned}
$$

Simple Quadratic Interpolation

- $T=\left\{t_{0}, t_{1}, t_{2}\right\}$

$$
\begin{aligned}
L_{0}^{2}(t) & =\frac{t-t_{1}}{t_{0}-t_{1}} \frac{t-t_{2}}{t_{0}-t_{2}} \\
L_{1}^{2}(t) & =\frac{t-t_{0}}{t_{1}-t_{0}} \frac{t-t_{2}}{t_{1}-t_{2}} \\
L_{2}^{2}(t) & =\frac{t-t_{0}}{t_{2}-t_{0}} \frac{t-t_{1}}{t_{2}-t_{1}}
\end{aligned}
$$

Problems

Problems with a single polynomial

- Degree depends on the number of interpolation constraints
- Strong overshooting for high degree ($n>7$)
- Problems with smooth joints
- Numerically unstable
- No local changes

Splines

Functions for interpolation \& approximation

- Standard curve and surface primitives in geometric modeling
- Key frame and in-betweens in animations
- Filtering and reconstruction of images

Historically

- Name for a tool in ship building
- Flexible metal strip that tries to stay straight
- Within computer graphics:
- Piecewise polynomial function

Linear splines

- Defined by two points: \vec{p}_{1}, \vec{p}_{2}
- Searching for $P(t)$ such that:
- $P(0)=\vec{p}_{1}$
- $P(1)=\vec{p}_{2}$
- Degree of P is 1
- Basis:
- $T_{1}(t)=1-t$
- $T_{2}(t)=t$

$$
P(t)=\vec{p}_{1} T_{1}(t)+\vec{p}_{2} T_{2}(t)
$$

$$
\begin{aligned}
& \text { Linear basis } \\
& \qquad P(t)^{\top}=\left(\begin{array}{ll}
1-t & t
\end{array}\right)\binom{\vec{p}_{1}^{\top}}{\vec{p}_{2}^{\top}}
\end{aligned}
$$

$$
P(t)^{\top}=M \cdot\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{\vec{p}_{1}^{\top}}{\vec{p}_{2}^{\top}}
$$

Cubic splines

- Defined by two points: \vec{p}_{1}, \vec{p}_{2} and two tangents: $\vec{\tau}_{1}, \vec{\tau}_{2}$
- Searching for $P(t)$ such that:
- $P(0)=\vec{p}_{1}$
- $P^{\prime}(0)=\vec{\tau}_{1}$
- $P^{\prime}(1)=\vec{\tau}_{2}$
- $P(1)=\vec{p}_{2}$
- Degree of P is 3
- Basis:
- $H_{0}^{3}(t)=$?
- $H_{1}^{3}(t)=$?
- $H_{2}^{3}(t)=$?
- $H_{3}^{3}(t)=$?

$$
P(t)=P(0) H_{0}^{3}(t)+P^{\prime}(0) H_{1}^{3}(t)+P^{\prime}(1) H_{2}^{3}(t)+P(1) H_{3}^{3}(t)
$$

Hermite Interpolation

Cubic splines

- Defined by two points: \vec{p}_{1}, \vec{p}_{2} and two tangents: $\vec{\tau}_{1}, \vec{\tau}_{2}$
- Searching for $P(t)$ such that:
- $P(0)=\vec{p}_{1}$
- $P^{\prime}(0)=\vec{\tau}_{1}$
- $P^{\prime}(1)=\vec{\tau}_{2}$
- $P(1)=\vec{p}_{2}$
- Degree of P is 3
- Basis:
- $H_{0}^{3}(t)=$?
- $H_{1}^{3}(t)=$?

- $H_{2}^{3}(t)=$?
- $H_{3}^{3}(t)=$?

$$
P(t)^{\top}=M \cdot H \cdot\left(\begin{array}{c}
\vec{p}_{1}^{\top} \\
\vec{\tau}_{1}^{\top} \\
\vec{\tau}_{2}^{\top} \\
\vec{p}_{2}^{\top}
\end{array}\right)=M \cdot H \cdot G
$$

Hermite Interpolation

Cubic splines

- Defined by two points: \vec{p}_{1}, \vec{p}_{2} and two tangents: $\vec{\tau}_{1}, \vec{\tau}_{2}$
- Searching for $P(t)$ such that:
- $P(0)=\vec{p}_{1}$
- $P(t)^{\top}=\left(\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right) \cdot H \cdot G$
- $P^{\prime}(0)=\vec{\tau}_{1}$
- $P^{\prime}(t)^{\top}=\left(\begin{array}{llll}3 t^{2} & 2 t & 1 & 0\end{array}\right) \cdot H \cdot G$
- $P^{\prime}(1)=\vec{\tau}_{2}$
- $P(1)=\vec{p}_{2}$
- Degree of P is 3
- $\vec{p}_{1}^{\top}=P(0)^{\top}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right) \cdot H \cdot G$
- $\vec{\tau}_{1}^{\top}=P^{\prime}(0)^{\top}=\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right) \cdot H \cdot G$
- Basis:
- $H_{0}^{3}(t)=$?
- $\vec{\tau}_{2}^{\top}=P^{\prime}(1)^{\top}=\left(\begin{array}{llll}3 & 2 & 1 & 0\end{array}\right) \cdot H \cdot G$
- $H_{1}^{3}(t)=$?
- $H_{2}^{3}(t)=$?
- $H_{3}^{3}(t)=$?

$$
\left(\begin{array}{c}
\vec{p}_{1}^{\top} \\
\vec{\tau}_{1}^{\top} \\
\vec{\tau}_{2}^{\top} \\
\vec{p}_{2}^{\top}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \cdot H \cdot\left(\begin{array}{c}
\vec{p}_{1}^{\top} \\
\vec{\tau}_{1}^{\top} \\
\vec{\tau}_{2}^{\top} \\
\vec{p}_{2}^{\top}
\end{array}\right)
$$

Hermite Interpolation

Cubic splines

- Defined by two points: \vec{p}_{1}, \vec{p}_{2} and two tangents: $\vec{\tau}_{1}, \vec{\tau}_{2}$
- Searching for $P(t)$ such that:
- $P(0)=\vec{p}_{1}$
- $P^{\prime}(0)=\vec{\tau}_{1}$
- $P^{\prime}(1)=\vec{\tau}_{2}$
- $P(1)=\vec{p}_{2}$
- Degree of P is 3
- Basis:
- $H_{0}^{3}(t)=$?
- $H_{1}^{3}(t)=$?
- $H_{2}^{3}(t)=$?
- $H_{3}^{3}(t)=$?

$$
H=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
2 & 1 & 1 & -2 \\
-3 & -2 & -1 & 3 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Cubic splines

- Defined by two points: \vec{p}_{1}, \vec{p}_{2} and two tangents: $\vec{\tau}_{1}, \vec{\tau}_{2}$
- Searching for $P(t)$ such that:
- $P(0)=\vec{p}_{1}$
- $P^{\prime}(0)=\vec{\tau}_{1}$
- $P^{\prime}(1)=\vec{\tau}_{2}$
- $P(1)=\vec{p}_{2}$
- Degree of P is 3
- Basis:
- $H_{0}^{3}(t)=(1-t)^{2}(1+2 t)$
- $H_{1}^{3}(t)=t(1-t)^{2}$
- $H_{2}^{3}(t)=t^{2}(t-1)$
- $H_{3}^{3}(t)=(3-2 t) t^{2}$

$$
H=\left(\begin{array}{ccc|c|c}
2 & 1 & 1 & -2 \\
-3 & -2 & -1 & 3 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Cubic splines

- Basis:
- $H_{0}^{3}(t)=(1-t)^{2}(1+2 t)$
- $H_{1}^{3}(t)=t(1-t)^{2}$
- $H_{2}^{3}(t)=t^{2}(t-1)$
- $H_{3}^{3}(t)=(3-2 t) t^{2}$

Properties of Hermite Basis Functions

- $H_{0}^{3}\left(H_{3}^{3}\right)$ interpolates smoothly from 1 to 0
- H_{0}^{3} and H_{3}^{3} have zero derivative at $t=0$ and $t=1$
- No contribution to derivative $\left(H_{1}^{3}, H_{2}^{3}\right)$
- H_{1}^{3} and H_{2}^{3} are zero at $t=0$ and $t=1$
- No contribution to position $\left(H_{0}^{3}, H_{3}^{3}\right)$
- $H_{1}^{3}\left(H_{2}^{3}\right)$ has slope 1 at $t=0(t=1)$
- Unit factor for specified derivative vector

$$
\left.H=\begin{array}{ccc|c}
2 & 1 & 1 & -2 \\
-3 & -2 & -1 & 3 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Examples: Hermite Interpolation

Bézier

Bézier splines

- Defined by 4 points:
- b_{0}, b_{3} : start and end points
- b_{1}, b_{2} : control points that are approximated
- Searching for $P(t)$ such that:
- $P(0)=b_{0}$
- $P^{\prime}(0)=3\left(b_{1}-b_{0}\right)$
- $P^{\prime}(1)=3\left(b_{3}-b_{2}\right)$

- $P(1)=b_{3}$
- Degree of P is 3

Bézier

Bézier splines

- Defined by 4 points:
- b_{0}, b_{3} : start and end points
- b_{1}, b_{2} : control points that are approximated
- Searching for $P(t)$ such that:
- $P(0)=b_{0}$
- $P^{\prime}(0)=3\left(b_{1}-b_{0}\right)$
- $P^{\prime}(1)=3\left(b_{3}-b_{2}\right)$

- $P(1)=b_{3}$
- Degree of P is 3

$$
\begin{gathered}
\left(\begin{array}{c}
p_{1}^{\top} \\
t_{1}^{\top} \\
t_{2}^{\top} \\
p_{2}^{\top}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
b_{0}^{\top} \\
b_{1}^{\top} \\
b_{2}^{\top} \\
b_{3}^{\top}
\end{array}\right) \\
P(t)^{\top}=M \cdot H \cdot T_{B H} \cdot G
\end{gathered}
$$

Bézier

Bézier splines

- Defined by 4 points:
- b_{0}, b_{3} : start and end points
- b_{1}, b_{2} : control points that are approximated
- Searching for $P(t)$ such that:
- $P(0)=b_{0}$
- $P^{\prime}(0)=3\left(b_{1}-b_{0}\right)$
- $P^{\prime}(1)=3\left(b_{3}-b_{2}\right)$
- $P(1)=b_{3}$
- Degree of P is 3
- Basis:
- $B_{0}^{3}(t)=(1-t)^{3}$
- $B_{1}^{3}(t)=3 t(1-t)^{2}$
- $B_{2}^{3}(t)=3 t^{2}(1-t)$
- $B_{3}^{3}(t)=t^{3}$
- Bernstein polynomial:

$$
B=H \cdot T_{B H}=\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

- Searching for $P(t)$ such that:
(1)

- $B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}$

$$
P(t)=b_{0} B_{0}^{3}(t)+b_{1} B_{1}^{3}(t)+b_{2} B_{2}^{3}(t)+b_{3} B_{3}^{3}(t)
$$

Bézier Properties

Advantages:

- End point interpolation
- Tangents explicitly specified
- Smooth joints are simple
- P_{3}, P_{4}, P_{5} collinear $\rightarrow \mathrm{G}^{1}$ continuous
- $P_{5}-P_{4}=P_{4}-P_{3} \rightarrow C^{1}$ continuous
- Geometric meaning of control points
- Affine invariance
- Convex hull property
- For $0<t<1: B_{i}(t) \geq 0$
- Symmetry: $B_{i}(t)=B_{n-i}(1-t)$

Disadvantages

- Smooth joints need to be maintained explicitly
- Automatic in B-Splines (and NURBS)

Direct evaluation of the basis functions $P(t)=\sum_{i} b_{i} B_{i}^{n}(t)$

- Simple but expensive

Use recursion

- Recursive definition of the basis functions

$$
B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}=t B_{i-1}^{n-1}(t)+(1-t) B_{i}^{n-1}(t)
$$

- Inserting this once yields:

$$
P(t)=\sum_{i=0}^{n} b_{i}^{0} B_{i}^{n}(t)=\sum_{i=0}^{n-1} b_{i}^{1} B_{i}^{n-1}(t)
$$

- With the new Bézier points given by the recursion

$$
\begin{gathered}
b_{i}^{0}(t)=b_{i} \\
b_{i}^{k}(t)=t b_{i+1}^{k-1}(t)+(1-t) b_{i}^{k-1}(t)
\end{gathered}
$$

DeCasteljau Algorithm:

- Recursive degree reduction of the Bezier curve by using the recursion formula for the Bernstein polynomials

$$
\begin{gathered}
P(t)=\sum_{i=0}^{n} b_{i}^{0} B_{i}^{n}(t)=\sum_{i=0}^{n-1} b_{i}^{1} B_{i}^{n-1}(t)=\cdots=b_{i}^{n}(t) \cdot 1 \\
b_{i}^{k}(t)=t b_{i+1}^{k-1}(t)+(1-t) b_{i}^{k-1}(t)
\end{gathered}
$$

Example:

- $t=0.5$

Subdivision using the deCasteljau Algorithm

- Take boundaries of the deCasteljau triangle as new control points for left / right portion of the curve

Extrapolation

- Backwards subdivision
- Reconstruct triangle from one side

Catmull-Rom-Splines

Goal

- Smooth (C^{1})-joints between (cubic) spline segments

Algorithm

- Tangents given by neighboring points $\mathrm{Pi}-1 \mathrm{Pi}+1$
- Construct (cubic) Hermite segments

Advantage

- Arbitrary number of control points
- Interpolation without overshooting
- Local control

Catmull-Rom-Splines

Catmull-Rom splines

- Defined by 4 points:
- c_{1}, c_{2} : start and end points
- c_{0}, c_{3} : neighbor segment points
- Searching for $P(t)$ such that:
- $P(0)=c_{1}$
- $P^{\prime}(0)=\frac{1}{2}\left(c_{2}-c_{0}\right)$
- $P^{\prime}(1)=\frac{1}{2}\left(c_{3}-c_{1}\right)$
- $P(1)=c_{2}$
- Degree of P is 3

Catmull-Rom-Splines

Catmull-Rom splines

- Defined by 4 points:
- c_{1}, c_{2} : start and end points
- c_{0}, c_{3} : neighbor segment points
- Searching for $P(t)$ such that:
- $P(0)=c_{1}$
- $P^{\prime}(0)=\frac{1}{2}\left(c_{2}-c_{0}\right)$
- $P^{\prime}(1)=\frac{1}{2}\left(c_{3}-c_{1}\right)$
- $P(1)=c_{2}$
- Degree of P is 3

$$
\begin{gathered}
\left(\begin{array}{c}
p_{1}^{\top} \\
t_{1}^{\top} \\
t_{2}^{\top} \\
p_{2}^{\top}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-0.5 & 0 & 0.5 & 0 \\
0 & -0.5 & 0 & 0.5 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
c_{0}^{\top} \\
c_{1}^{\top} \\
c_{2}^{\top} \\
c_{3}^{\top}
\end{array}\right) \\
P(t)^{\top}=M \cdot H \cdot T_{C H} \cdot G
\end{gathered}
$$

Catmull-Rom-Splines

Catmull-Rom splines

- Defined by 4 points:
- c_{1}, c_{2} : start and end points
- c_{0}, c_{3} : neighbor segment points
- Searching for $P(t)$ such that:
- $P(0)=c_{1}$
- $P^{\prime}(0)=\frac{1}{2}\left(c_{2}-c_{0}\right)$
- $P^{\prime}(1)=\frac{1}{2}\left(c_{3}-c_{1}\right)$
- $P(1)=c_{2}$
- Degree of P is 3

$$
C=H \cdot T_{C H}=\frac{1}{2}\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
2 & -5 & 4 & -1 \\
-1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0
\end{array}\right)
$$

- Basis:
- $C_{0}^{3}(t)=\frac{1}{2} t(1-t)^{2}$
- $C_{1}^{3}(t)=\frac{1}{2}(t-1)\left(3 t^{2}-2 t-2\right)$
- $C_{2}^{3}(t)=-\frac{1}{2} t\left(3 t^{2}-4 t-1\right)$
- $C_{3}^{3}(t)=\frac{1}{2} t^{2}(t-1)$

Catmull-Rom-Splines

Catmull-Rom-Spline

- Piecewise polynomial curve
- Four control points per segment
- For n control points we obtain $(n-3)$ polynomial segments

Application

- Smooth interpolation of a given sequence of points
- Key frame animation, camera movement, etc.
- Only G1-continuity
- Control points should be equidistant in time

Choice of Parameterization

Problem

- Often only the control points are given
- How to obtain a suitable parameterization t_{i} ?

Example: Chord-Length Parameterization

$$
\begin{gathered}
t_{0}=0 \\
t_{i}=\sum_{j=1}^{i} \operatorname{dist}\left(P_{i}-P_{i-1}\right)
\end{gathered}
$$

- Arbitrary up to a constant factor

Warning

- Distances are not affine invariant !
- Shape of curves changes under transformations !!

Chord-Length versus uniform Parameterization

- Analog: Think $P(t)$ as a moving object with mass that may overshoot

B-Splines

Goal

- Spline curve with local control and high continuity

Given

- Degree:
- Control points:
- Knots:
(Control polygon, $m \geq n+1$)
- The knot vector defines the parametric locations where segments join

B-Spline Curve

$$
P(t)=\sum_{i=0}^{m} N_{i}^{n}(t) p_{i}
$$

- Continuity:
- $\mathrm{C}^{\mathrm{n}-1}$ at simple knots
- C^{n-k} at knot with multiplicity k

Recursive Definition

$$
\begin{aligned}
& N_{i}^{0}(t)= \begin{cases}1 & \text { if } t_{i}<t<t_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& N_{i}^{n}(t)=\frac{t-t_{i}}{t_{i+n}-t_{i}} N_{i}^{n-1}(t)-\frac{t-t_{i+n+1}}{t_{i+n+1}-t_{i+1}} N_{i+1}^{n-1}(t) \\
& N_{0}{ }^{0} \quad N_{1}{ }^{0} \quad N_{2}{ }^{0} \quad N_{3}{ }^{0} \\
& \hline
\end{aligned}
$$

Recursive Definition

- Degree increases in every step
- Support increases by one knot interval

Uniform Knot Vector

- All knots at integer locations
- UBS: Uniform B-Spline
- Example: cubic B-Splines

Local Support = Localized Changes

- Basis functions affect only $(n+1)$ Spline segments
- Changes are localized

B-Spline Basis Functions

Convex Hull Property

- Spline segment lies in convex Hull of $(n+1)$ control points

- $(n+1)$ control points lie on a straight line \Rightarrow curve touches this line
- n control points coincide \Rightarrow curve interpolates this point and is tangential to the control polygon

Basis Functions on an Interval

- Knots at beginning and end with multiplicity
- NUBS: Non-uniform B-Splines
- Interpolation of end points and tangents there
- Conversion to Bézier segments via knot insertion

Recursive Definition of Control Points

- Evaluation at $t: t_{i}<t<t_{i+1}: i \in\{l-n, \ldots, l\}$
- Due to local support only affected by $(n+1)$ control points

$$
\begin{gathered}
P_{i}^{r}(t)=\left(1-\frac{t-t_{i+r}}{t_{i+n+1}-t_{i+r}}\right) P_{i}^{r-1}(t)+\frac{t-t_{i+r}}{t_{i+n+1}-t_{i+r}} P_{i+1}^{r-1}(t) \\
P_{i}^{0}(t)=P_{i}
\end{gathered}
$$

Properties

- Affine invariance
- Stable numerical evaluation
- All coefficients >0

$$
P_{i}^{n}(t)=d_{i}^{n}
$$

Algorithm similar to deBoor

- Given a new knot t
- $t_{i}<t<t_{i+1}: i \in\{l-n, \ldots, l\}$
- $T^{*}=T \cup\{t\}$
- New representation of the same curve over T^{*}

$$
\begin{aligned}
& P^{*}(t)=\sum_{i=0}^{m+1} N_{i}^{n}(t) P_{i}^{*} \\
& P_{i}^{*}=\left(1-a_{i}\right) P_{i-1}+a_{i} P_{i} \\
& a_{i}=\left\{\begin{array}{cc}
\frac{1}{t-t_{i}} & i \leq l-n \\
t_{i+n}-t_{i} & l-n+1 \leq i \leq l \\
0 & i \geq l+1
\end{array}\right.
\end{aligned}
$$

Applications

- Refinement of curve, display

Consecutive insertion of three knots at $t=3$ into a cubic B-Spline.
First and last knot have multiplicity n

$$
T=(0,0,0,0,1,2,4,5,6,6,6,6), l=5
$$

Conversion to Bézier Spline

B-Spline to Bezier Representation

- Remember:
- Curve interpolates point and is tangential at knots of multiplicity n
- In more detail: If two consecutive knots have multiplicity n
- The corresponding spline segment is in Bézier from
- The $(n+1)$ corresponding control polygon form the Bézier control points

NURBS

Non-Uniform Rational B-Splines

- Homogeneous control points: now with weight w_{i}
- $P^{\prime}{ }_{i}=\left(w_{i} x_{i}, w_{i} y_{i}, w_{i} z_{i}, w_{i}\right)=w_{i} P_{i}$

$$
\begin{gathered}
P^{\prime}(t)=\sum_{i=0}^{m} N_{i}^{n}(t) P_{i}^{\prime} \\
P=\frac{\sum_{i=0}^{m} N_{i}^{n}(t) P_{i} w_{i}}{\sum_{i=0}^{m} N_{i}^{n}(t) w_{i}}=\sum_{i=0}^{m} R_{i}^{n}(t) P_{i} w_{i}, \quad \text { with } R_{i}^{n}(t)=\frac{N_{i}^{n}(t) w_{i}}{\sum_{i=0}^{m} N_{i}^{n}(t) w_{i}}
\end{gathered}
$$

NURBS

Properties

- Piecewise rational functions
- Weights
- High (relative) weight attract curve towards the point
- Low weights repel curve from a point
- Negative weights should be avoided (may introduce singularity)
- Invariant under projective transformations
- Variation-Diminishing-Property (in functional setting)
- Curve cuts a straight line no more than the control polygon does

Examples: Cubic B-Splines

