Computer Graphics Worksheet Texturing and Color

Dr. Sergey Kosov Jacobs University Bremen

Problem 1. Texturing

We would like to apply a texture image of resolution *width* x *height* to a sphere, such that the whole sphere will be covered with the whole texture. The sphere is located at point $\vec{s}(x_0, y_0, z_0)$ and has radius *r*. The ray hits the sphere at point $\vec{h}(x, y, z)$. Please derive the texture coordinates (u, v) for point \vec{h} .

Hint: You can use the following formulas for transition from spherical to cartesian coordinate systems:

 $x = x_0 + r \sin \theta \cos \varphi$ $y = y_0 + r \sin \theta \sin \varphi$ $z = z_0 + r \cos \theta$ where $\theta \in [0; \pi]$ and $\varphi \in [0; 2\pi)$

Problem 2. Reflection Texturing

Given a ray hit-point \overrightarrow{h} , the origin of the ray from camera \overrightarrow{o} and the local surface normal \overrightarrow{n} (all expressed in world space), compute the pixel coordinates that have to be accessed in the reflection map texture. This texture is stored so that uv-coordinates map to spherical coordinates (normalized in [0, 1]).

Problem 3. Color Models

On the image below you can see the CIE RGB color matching functions, which are the numerical description of the chromatic response of the *observer*. As you know these functions were estimated empirically during the color matching experiments:

Please explain with your own words

- a) How it is possible that the red curve becomes negative?
- b) How the negative values were estimated?