Computer Graphics Worksheet Texturing and Color

Dr. Sergey Kosov
Jacobs University Bremen

Problem 1. Texturing

We would like to apply a texture image of resolution width x height to a sphere, such that the whole sphere will be covered with the whole texture. The sphere is located at point $\vec{s}\left(x_{0}, y_{0}, z_{0}\right)$ and has radius r. The ray hits the sphere at point $\vec{h}(x, y, z)$. Please derive the texture coordinates (u, v) for point \vec{h}.

Hint: You can use the following formulas for transition from spherical to cartesian coordinate systems:
$x=x_{0}+r \sin \theta \cos \varphi$
$y=y_{0}+r \sin \theta \sin \varphi$
$z=z_{0}+r \cos \theta$
where $\theta \in[0 ; \pi]$ and $\varphi \in[0 ; 2 \pi)$

Problem 2. Reflection Texturing

Given a ray hit-point \vec{h}, the origin of the ray from camera \vec{o} and the local surface normal \vec{n} (all expressed in world space), compute the pixel coordinates that have to be accessed in the reflection map texture. This texture is stored so that uv-coordinates map to spherical coordinates (normalized in [0, 1]).

Problem 3. Color Models

On the image below you can see the CIE RGB color matching functions, which are the numerical description of the chromatic response of the observer. As you know these functions were estimated empirically during the color matching experiments:

Please explain with your own words
a) How it is possible that the red curve becomes negative?
b) How the negative values were estimated?

