Computer Graphics Worksheet Sampling and Reconstruction

Dr. Sergey Kosov
Jacobs University Bremen

Problem 1. Convolution vs Multiplication

The convolution of a function $f(x)$ with a second function $g(x)$ is defined as:
$(f * g)(x)=\int_{-\infty}^{\infty} f(t) \cdot g(x-t) d t$

The multiplication of two function is defined as the point-wise multiplication:
$(f \cdot g)(x)=f(x) \cdot g(x)$
The transformation of a signal $f(x)$ to Fourier space is given by:
$F(\omega)=\int_{-\infty}^{\infty} f(x) \cdot e^{-2 \pi i \omega x} d x$

We call \mathscr{F} the operator mapping f to Fourier space: $\mathscr{F}[f(x)]=F(\omega)$. Show that convolving in signal space is the same as multiplication in Fourier space:
$\mathscr{F}[(f * g)(x)]=\mathscr{F}[f(x)] \cdot \mathscr{F}[g(x)]$

Problem 2. Fourier Transformation

Show that the Fourier transformation of the box function $B_{d}(x)$ is a sinc type function. The sinc function is defined as $\sin c(x)=\frac{\sin \pi x}{\pi x}$ and a definition of the Fourier transform can be found in the Problem 1.
$B_{d}(x)=\left\{\begin{array}{llr}0 & \text { for } & x \leq-d \\ 1 & \text { for } & -d<x<d \\ 0 & \text { for } & d \leq x\end{array}\right.$

Problem 3. Triangle Filter

Show that reconstructing a signal that is sampled at sampling distance 1 with the triangle filter $T(x)$ is equivalent of performing linear interpolation.
$T_{1}(x)=\left\{\begin{array}{llr}0 & \text { for } & x<-1 \\ x+1 & \text { for } & -1 \leq x<0 \\ -x+1 & \text { for } & 0 \leq x<1 \\ 0 & \text { for } & 1 \leq x\end{array}\right.$

Problem 4. Sampling Theory

Let $f(x)$ be an infinite signal that fulfils the Nyqvist property, thus the highest frequency of the signal is smaller than $\frac{1}{2 \Delta x}$ if Δx is the sampling distance. Consider a regular sampling $f_{s}(x)$ of $f(x)$ with sample distance Δx.
a) Is an exact signal reconstruction of $f(x)$ possible? If so, why?
b) How has the reconstruction to be performed in image and Fourier space?

Problem 5. Antialiasing

c) Describe what aliasing means in Fourier space.
d) Consider an infinite signal $f(x)$ and a regular sampling $f_{s}(x)$ with sampling distance Δx that shows no aliasing artefacts. The sampling distance is now increased step by step until the first aliasing artefacts occur.
How can we best get an aliasing-free sampled signal from these samples? Describe the filter procedure in Fourier and signal space. You do not have to derive the exact filter kernels (but you can of course).

