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Abstract 

 
This paper describes a variational approach to dense stereo reconstruction, which 

combines powerful tools such as regularization and multi–scale processing to estimate 

directly depth from a number of stereo images, while preserving depth discontinuities. 

Variational methods currently belong to the most accurate techniques for the 

computation of the displacement field between the frames of stereo images. In the past 

few years this problem has raised a great deal of interest due to the increasing number 

of applications, both in vision and in graphics, where this problem has become of 

crucial importance. Accuracy and time performance improvements of these methods 

are achieved every year. Most of the efforts are directed towards finding better data and 

smoothness terms for the energy functional.  In this paper different data terms as soon 

as different smoothness terms are considered. During the work on variational approach 

two methods have been developed: the depth-driven method, where depth is computed 

directly from the grey-level images; and the disparity–driven method, where depth is 

computed from calculated disparity map. Also in this paper a number of novel 

principles and techniques are offered which allow looking at the application of 

variational methods in computer vision from a new point of view. All the methods can 

also deal with any number (greater than one) of cameras. Moreover, to solve the 

problem numerically, a row of PDE–based schemes have been applied. Experimental 

results illustrate the capabilities and shortcomings of these methods.  
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„Even mathematics needs it, even the invention of integral and 

differential calculus could be impossible without imagination.  

Imagination is the quality of the highest value.“ 

– Vladimir Ilyich Lenin.

 

 

Chapter 1 

 

Introduction 

 

1.1 Problem description 

 
One of the key classical and long-debated correspondence problems in Computer 

Vision is the reconstruction of a detailed depth-map from a set of cameras. The cameras 

give us an ordered set of pictures – a stereo image and we would like to be able to 

correctly estimate the distance from an observer to the objects represented in such a 

picture array. These distances values in the image points constitute the depth-map. In 

order to compute the depth-map we need to compare certain features that stay 

invariant in the picture set and that can help us to identify the objects and distances to 

them in the scene. These features we call invariance or constancy assumptions. 

So far, most of the research done in the field of application of variational methods 

to computer vision problems has been directed to computation of the optic flow field 

between the frames of an image sequences. In this thesis we apply that experience to the 

problem of the depth-map reconstruction from a set of cameras. 

The main goal of this thesis is to investigate the application of variational methods 

to the problem of depth-map reconstruction; to formulate method’s strong points and 

advantages over other map reconstruction methods as well as its shortcoming; to place 

the method among existing map reconstruction methods. Another primary goal of the 

thesis is to define how the number of cameras and their position / orientation influences 

the resulting depth-map. But let us first formulate the reconstruction problem in a more 

formal manner. 
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1.2 What is a depth-map? 

 
The term "depth-map" refers to a visual phenomenon that we experience every day. 

Humans like all other mammals make use of the binocular vision – the vision in which 

both eyes are used together. It gives four advantages: a spear eye if one is damaged, a 

wider field of view, binocular summation and stereopsis1. The human vision system 

gives a precise depth perception due to the stereopsis in which a parallax is provided 

by the two eyes’ different position. A machine has the advantage to have more than two 

eyes, and vary their position on body. 

Having a stereo image (a picture set) we would like to estimate the distances to the 

objects, represented at the image. For this purpose, we take two pictures of the set (left 

and right, for example) and try to estimate the position to which every pixel from the 

first picture has moved in the second picture. Having this information we calculate the 

depth value in the pixel. 

A picture is represented as a pixel matrix, where every pixel has a unique 

coordinate position. In order to represent the problem mathematically we consider a 

scalar-valued picture set ),( vuI i , where Tvu ),(  denotes the coordinates of the pixel.  

 

  
Figure 1.1: “Tsukuba” scene: Left: The left frame of scene; Right: The ground truth depth-map, estimated 

between the left and the right pictures of the same set.  

 

Let the left picture be denoted by ( )vuI l , . Then the right picture will be denoted by 

( )),(),,( vuvuI r ζξ  where ),( vuξ  and ),( vuζ  show the new position of the pixel, 

which was previously at position Tvu ),( . And the depth-map value in this pixel is an 

another function: ( ) ( )),(),,(, vuvufvuz ζξ= . As we are working with real-world data, 

which is continuous, not discrete, like the pixel notation, the actual displacement 

position coordinates are not necessary integer values. 

Having formulated the problem like that, we can state that the computation of the 

depth-map is actually the computation of the depth values for every pixel of an image 

(see Figure 1.1). 

                                                 
1 An ability to make fine depth discriminations. 
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1.3 Fields of application 

 
The depth-map has many fields of application: 

The main area of depth-map application is the robotics branch. A robot gets 

information about the surrounding world through its visual sensors system. Having the 

depth-map it can determine how far the objects around him are situated and even 

determine its own position in the world. Of course without this information, machine 

can not make movement decisions or even operate with nearby objects. Moreover, the 

depth-map helps the robot to make a segmentation of the world’s objects and recognize 

them (figure 1.2, left picture).  

Another wide area of depth-map application lies in aeronautics and aero graphics. 

Calculated depth-map helps to define the altitude and the speed of a flying aircraft or a 

satellite. Coming to the problem from other side, a satellite or an aircraft can determine 

the earth surface height above sea level, or cities infra structure, what is very useful in 

region recognition. 

 

  
Figure 1.2: Application fields of the depth-field: Left: Robot eyes ([WRM07]); Centre: Human face 

reconstruction ([YHR04]); Right: Driver assistance system ([KB07]).  

 

A relatively similar way of using the depth-field is applied in the driver assistance 

systems. Novel car computers are capable to determine the motion around a car and 

distances to the other cars at the street. Such systems allow preserving car from 

hijacking or having an accident by making it stop or just by warning the driver that a 

dangerous situation is approaching (figure 1.2, right picture). 

Also depth-maps are widely spread in computer graphics industry. They allow 

creating virtual models of real existing objects. For example it is enough to make 2 - 3 

photos from different positions to reconstruct the human face in 3 dimensional virtual 

worlds (figure 1.2, centre picture). 

Science also uses depth-maps, for example, in crack detection. Using ultra sound or 

X-rays it is possible to look inside a probe without destroying it. Depth-map helps to 

determine the ultrasound or X-ray sensor position on the investigating object’s surface. 

These were only a few examples that show the usefulness of the depth estimation 

as a computer vision problem. And for every specific application there are specific 

problems exist. With no doubts they should be taken into account and should be 

considered, but the more important thing is to develop a reliable depth-map 

computation algorithm for a general case. 
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1.4 Definitions and notations 

 
We denote the set of natural numbers as Ν  and use +Ν  for }0{UΝ . The set of integer 

numbers is given by ,...}1,0,1{...,−=Ζ . The set of real and rational numbers are denoted as 

R  and Q  respectively. 

Let ),( yxff ≡  (this means “identical with”) be a smooth function; “smooth” means it 

is as many times continuously differentiable in the variable x  and y  as required. 

Further we denote: 
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Definition 1: Let Ζ∈nm,  be numbers. We define integer intervals as 

 
nmnm ,...,];[ =  
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Definition 2: Any column-vector can be transformed into the corresponding row-

vector and vise versa by means of the transpose operation. Let v  be a row-vector, then 
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Definition 3: Let v  be a vector, than its length is defined as 

 

nv =  

 

Definition 4: The highest occurring derivative in a partial differential equation 

(PDE) determines its order. For example: 
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• 0=+ yx ff  – is a first order PDE; 

• 0=+ yyx ff  – is a second order PDE; 

• 0=∆f   – is a second order PDE; 

• 0=+ yxxx ff  – is a third order PDE. 

 

Definition 5: In a PDE relating a function f  to its derivatives, we denote 

sometimes  

 

• f  as the dependent variable (as it is not known and depends on x  and y . 

• x  and y  as the independent variables. 

 

Definition 6: Non linear PDEs in a dependent variable f  arise by coefficients of 

derivatives of f  depending on f  itself. For example: 

 

• 0=∆f   – is a linear PDE; 

• 0=∆⋅ ff         – is a non linear PDE; 

• 0)( 2 =∆⋅∇ ff   – is a non linear PDE. 

 

Definition 7: In order to convert an analog signal into its digital representation we 

use the sampling procedure. Let RRf →:  be an analog function. Then the 

corresponding discrete function nRf ∈  is given for all ]1;0[ −∈∀ nk  as  

 

)( xkffk ∆= , 

 

where +Ν∈n  is a number of samples and Rx∈∆  is a sampling interval. 
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in a similar manner we approximate )( xkf xx ∆  at 
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1.5 Outline of the thesis 

 
Variational methods are the most precise way, so far, to compute the optic flow. In 

Chapter 2 the general structure of variational methods is briefly explained, together 

with the meanings of the data and the smoothness terms. We adopt the famous 

variational methods of Horn-Schunck and Brox et al. which were developed for optic 

flow computation, to the depth-map reconstruction problem.  

As the main goal of this thesis is the investigation of application of variational 

methods to the depth-map reconstruction problem, in Chapter 3 we create a 

mathematical model for correspondence problem, discuss constancy assumptions for 

data term and chose a suitable smoothness term relying on the diffusion processes 

theory. Also in this chapter we introduce the technique of automatic controlling the 

variational process during solution, capable to improve the final result, handle on-run 

solver mistakes and speed up the convergence process. 

In Chapter 4 we discuss the depth-map reconstruction based on information from 

two cameras. We formulate principles and criteria for the reconstruction and offer new 

methods in addition to classical optic-flow methods, adopted for our problem. Later in 

the chapter, we step by step derive several numerical schemes for implementing and 

resolving the problem on a computer and achieve first results. 

In Chapter 5 as a primary goal of the thesis, we extend all the theory foundation, 

gained in previous Chapter, for the multi – view case.  

This thesis is closed with the Chapter 6, where we combine the theory from the 

above chapters in one and present and discuss our experimental results. After that we 

make the conclusion of the thesis. 
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Chapter 2 

 

Variational Optic Flow Methods 

 
Calculus of variations is a field of mathematics that deals with functionals2, as 

opposed to ordinary calculus which deals with functions. Such functionals in our case 

are formed as integrals involving an unknown function and its derivatives. The interest 

is in extreme functions: those making the functional attain a maximum or minimum 

value [Els61]. Nowadays, variational methods are among the best performing 

techniques in image processing for depth-map reconstruction: being global methods 

and thus operating on entire image domain, they recover the depth-map as the 

minimizer of a suitable functional, which we will call energy functional.  

In this chapter we explain how to construct such energy functionals, we illustrate 

the mathematical meaning of parts, of which the functional consists, and we show how 

to find the unknown function – the depth-map which minimizes the constructed energy 

functional.  

 

2.1 General structure 
 

Let us suppose that we are given a stereo image, represented as a number of 

pictures of a certain scene from different positions and angles ),( vuI i , Ni ,...,1= , where 

),( vu  denotes the point coordinates in image. And moreover let us suppose that we 

would like to compute the depth-map field ),( vuz . According to variational methods 

we should construct an energy functional which has the following structure: 

 

  ( ) ∫∫
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vuzvuIvuIFvuzE N

),(
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),(
),,(),,(),...,,(),( 1  (2.1.1) 

                                                 
2 The functions that take functions as theirs arguments. 
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or in more general form: 

 

( ) ∫∫
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= dudv
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The integration domain Ω  – is the entire image domain. Here the unknown 

function ),( vuz  has the dimensions which equal to the dimensions of the input set of 

images. For the simplicity, let us introduce the following notations:  

 

u

vuz
zu ∂

∂
=

),(
: , 

v

vuz
zv ∂

∂
=

),(
: .    (2.1.3) 

 

The functional ( )),( vuzE  consists of two terms: the data term and the smoothness 

term. While the data term provides us with the information about depth, the 

smoothness term distributes this information:  

 

∫∫
Ω

+= dudvzztermSmothnesszvutermDatazE vu ),(_),,(_)( .   (2.1.4) 

 

Such an approach guaranties us that the computed depth-map will be always 

dense. For example, in a case of data term can not give us in some region more or less 

useful information, the smoothness term fills in this region with information, computed 

from neighboring regions.  

 

2.1.1 Presmoothing step 

 
Instead of using the original image set ),( vuI i  as input, we will use the 

presmoothed versions of it. It will help us to get rid of small noise and disturbances in 

pictures, make discrete image data more suitable for calculating its derivatives via 

difference schemes and thus improve the final result. The presmoothing step could be 

done with the help of Gaussian low-pass filtering, e.g. via convolution with a Gaussian 

kernel ρK , where ρ   is the standard deviation:  

 

ii IKI *ρ
ρ = .     (2.1.5) 

 

The parameter ρ  is a very important parameter since it greatly affects the final 

result of the depth-map computation. From this place and so on, we will write iI  

without ρ , but mention already presmoothed image.  
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2.1.2 Minimization 

 
Our main goal is to find such a function ),( vuz , which minimizes the energy 

functional ( )),( vuzE . By another words, having constructed the energy functional, we 

should minimize it in order to find the best solution for the depth-map. Moreover, if the 

constructed functional (2.1.2) is strictly convex3, it will have a unique solution that 

minimizes it.  

The major formula of the calculus of variation was developed by Leonard Euler 

(April 15, 1707 – September 18, 1783) and Joseph-Lois Lagrange (January 25, 1736 – April 

10, 1813) in the 1750s. In an honor of these mathematicians it is called the Euler-Lagrange 

equation.  

The Euler-Lagrange equation is an equation satisfied by a function z  of the 

parameters u  and v  which extremises the functional (2.1.2), and F  is a given function 

which has continuous first order partial derivatives.  The Euler-Lagrange equation then 

is the partial differential equation: 

 

     0=−−
vu zzz F

dv

d
F

du

d
F ,    (2.1.6) 

 

where the unknown function ),( vuz  must necessary satisfy this equation. 

In that way, in order to minimize our energy functional, we should solve the Euler-

Lagrange equation with homogeneous Neumann boundary conditions. This step is 

done via discrete numerical schemes. We are working with discrete images which 

consist of atom picture elements – pixels. The Euler-Lagrange equation is discretized 

and approximated via finite-differences schemes. At the end we have linear or non-

linear system of equations. To solve it, a number of iterative numerical schemes has 

been developed. 

 

2.2 Construction of the energy functional 

 
Since the energy functional consists of two parts – the data term and the 

smoothness term (2.1.4) and both terms have its own meaning, we will build them 

separately. For simplicity in this chapter as well as in the next two chapters we consider 

the case of a stereo image given by only 2 pictures. All the theory derived for the case of 

2 pictures is valid in the multi-picture case, and we will consider the extension to N 

cameras in the fifth chapter. 

Data term. The data term is a number of combined assumptions that certain 

features of the image do not change, but remain constant from one picture to another. 

                                                 
3 A real-valued function f  defined on an interval is called convex if for any two points x  and y  in 

its domain and any t  in [0; 1], we have )()1()())1(( yftxtfyttxf −+≤−+ . 
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The data term is responsible for supplying us with information about depth-field and 

stand for the constancy assumptions that are used. The most general assumption used 

in this paper is the brightness constancy assumption.  

 

   
Figure 2.1: “Geometric primitives” scene: Left: Picture achieved by the left camera; Centre: The whole 

scene; Right: Picture achieved by the right camera 

 

To explain the main point of the grey-value constancy assumption, let us consider 

figure 2.1. At the centre of the figure we can see “Geometric primitives” scene with two 

cameras, shooting it to achieve a stereo image. At the right and at the left we observe 

pictures gained by the right and the left cameras correspondingly. As we have noticed, 

all the primitives shot by the left camera, are shifted relative to the primitives, shot by 

the right camera. And the red ball has bigger shift than more distant from cameras 

object – blue pyramid. Also we can notice that green cube, which is situated between 

the red ball and the blue pyramid in depth, has smaller shift than the ball, but bigger 

shift than the pyramid. So, if we could estimate this shift, and knowing the distance 

between the cameras, we could calculate the distances to the objects in scene.  

The grey-value constancy assumption is based on assumption that all the objects in 

scene have lambertian surfaces4. It means that the grey value of a pixel is not changed by 

the displacement: 

 

     ),(),( 222111 vuIvuI = .     (2.2.1) 

 

This literally means that if ),( 111 vuI  is the grey value of pixel at point ),( 11 vu  in the 

first picture, this value remains equal to the grey value of pixel at point ),( 22 vu  in the 

second picture. It is also very important to express the coordinates ),( 11 vu  through the 

coordinates ),( 22 vu  and the unknown function ),( 22 vuz : 

 

     
( )
( )




=

=

.),(,,

;),(,,

22221

22221

vuzvuv

vuzvuu

ζ
ξ

    (2.2.2) 

 

Pay your attention that if ),( 111 vuI  is another feature of the picture, which remains 

constant from one picture to another of a stereo image, the statement (2.2.1) is still valid.  

We can rewrite the equality (2.2.1) in the following form: 

 

                                                 
4 The perfect diffuse surfaces that scatter incident illumination equally in all directions. 
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     0),(),( 222111 =− vuIvuI .    (2.2.3) 

 

But there is nothing ideal in real life, so the equality (2.2.3) as usual is not true. But 

we can fulfill the following demand: 

 

     min),(),( 222111 →− vuIvuI ,   (2.2.4) 

 

or  

 

     min),(),(
2

222111 →− vuIvuI .   (2.2.5) 

 

We put the square in the formula (2.2.5) because of two reasons: we want to 

penalize positive and negative deviations in the same way and the quadratic penalizer 

leads to the linear system of equations. In the section 3.5 we discuss other penalizing 

functions. Now we can write down the simplest data term based on the grey-value 

constancy assumption: 

 

   
2

222111 ),(),(),,(_ vuIvuIzvutermData −= ,   (2.2.6) 

 

with coordinates expression (2.2.2). 

Smoothness term. The smoothness term stands for the assumption that the 

neighboring regions belong to the same object and thus these regions have similar 

depth. The main role of the smoothness term is the redistribution of the computed 

information and smoothing of depth outliers. In case we get no reliable information 

from the data term, the smoothness term will realize its smoothing effect by filling in 

the problem region with data, calculated from neighboring regions.  

In fact, we introduce here an additional assumption that the depth-map is globally 

smooth – a smoothness assumption. In such a way, we can write down the simplest 

smoothness term, constituted by the homogeneous regularizer: 

 

    
2

),(_ zzztermSmoothness vu ∇= ,    (2.2.7) 

 

where 22

vu zzz +=∇ . 

As usual to control how much the smoothness term will prevail during the 

computation, the parameter ϕ  is introduced. If the parameter ϕ  is larger, then the 

computed depth-map will be smoother: 

 

     
2

),(_ zzztermSmoothness vu ∇⋅=ϕ .    (2.2.8) 

 

Having constructed the data term and the smoothness term, we now can write 

down the energy functional: 
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   ∫∫
Ω

∇⋅+−= dudvzvuIvuIzE
22

222111 ),(),()( ϕ ,   (2.2.9) 

 

or, taking into account (2.2.2): 

 

   ∫∫
Ω

∇⋅+−= dudvzvuIIzE
22

21 ),(),()( ϕζξ .   (2.2.10) 

 

Now we have to derive the Euler-Lagrange equation (2.1.6) from the functional 

(2.2.10). Let us do it step by step to understand how it works. 

 

( ) ( )zvzu IIvuII
z

F
ζζξξζξζξ ),(),(),(),(2 1121 +⋅−⋅=

∂
∂

  (2.2.11) 

 

Pay your attention, that in the formula (2.2.11) we have the derivative only from 

data term, since in smoothness term no function ),( vuz  exists, but only its derivatives. 

Thus this part of the Euler-Lagrange we will call data term of the Euler-Lagrange equation.  
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d
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We have got here Laplacian of unknown function ),( vuz : 
2

2

2

2

v

z

u

z
z

∂
∂

+
∂
∂

=∆ . 

Correspondingly to the smoothness term, this part of the Euler-Lagrange we will call 

smoothness term of the Euler-Lagrange equation. The Laplacian is the core of linear 

diffusion process, which is identical to the Gaussian blurring process.  

Combining (2.2.10) and (2.2.11) together and cancelling the common factor 2, we 

can write the Euler-Lagrange equation for the functional (2.2.9): 

 

( ) ( ) 0),(),(),(),( 2111 =∆⋅−−⋅+ zvuIIII zvzu ϕζξζζξξζξ .  (2.2.13) 

 

After discretizing this equation we have linear or non-linear system. That depends 

on the relations between u  and z , and between v  and z  in functions zξ  and zζ . A 

number of numerical schemes has been developed for efficiently solving such linear 

and non-linear equations [Bru06]. 

 

2.3 The Euler-Lagrange equation 

 
In this section we will construct more sophisticated energy functional and derive its 

Euler-Lagrange equation. We will precede parallel with the famous Brox et al. method 

which was developed for optic flow problems and integrates several successful 
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concepts [BBPW04]. First of all let us discuss the gradient constancy assumption and 

then add it to our data term. 

The grey value constancy assumption has one decisive drawback: It is quite 

susceptible to slight changes in brightness, which often appear in natural scenes. 

Therefore, it is useful to allow some small variations in the grey value and help to 

determine the displacement vector by a criterion that is less sensitive to grey value 

changes. Such a criterion is the gradient of the image grey value, which can also be 

assumed not to vary due to the displacement. This gives:  

 

),(),( 222111 vuIvuI ∇=∇ .    (2.3.1) 

 

This formula is very close to the one in (2.2.1). Doing the same steps like with the 

grey-value constancy assumption, we can formulate the corresponding constraint that 

must be fulfilled: 

 

min),(),(
2

222111 →∇−∇ vuIvuI ,   (2.3.2) 

 

taking into account the coordinates derivation (2.2.2). 

Now, we just add this constraint to our data term and use a weighted approach to 

control the influence of each of the assumptions during the computation: 
 

2

222111

2

222111 ),(),()1(),(),(),,(_ vuIvuIvuIvuIzvutermData ∇−∇⋅Θ−+−⋅Θ= , (2.3.3) 

 

where [ ]1;0∈Θ . 

For improvement we additionally introduce a Ψ  function, which is in general a 

penalizing function. Now we minimize two squared constancy assumptions, but using 

such a quadratic penalizer gives us too much influence to outliers, that may appear 

during the computation in depth-map. Brox et al. suggested the usage of another kind 

of penalizing function that is given by the absolute value function: 

 
222 )( λ+=Ψ ss ,     (2.3.4) 

 

where λ  is a small constant. 

By this definition, function (2.3.4) is still convex and that’s why it is easier to 

minimize. And, what is more important, function Ψ  penalizes the outliers in a less 

severe way. Moreover, we have possibility to control this penalization with the 

parameter λ .  

The type of smoothness term that we have constructed is not always the most 

suitable one, since the smoothness assumption implies that the resulting depth-map has 

no discontinuities. In real world, which is consists of different objects these objects have 

different distance from an observer. And the object’s boundaries should be preserved, 

but not smoothed 
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The Laplacian, that we have now, constitutes the Gaussian blurring process, which 

realizes smoothing in the same manner in all directions. Such an approach smoothes all 

the discontinuities which appear in depth-map. If we would like to preserve the 

discontinuities from smoothing, we should somehow decay the blurring process in 

discontinuities regions. It is done by imposing piecewise smoothness, by penalizing the 

variation from the depth-map, using the same Ψ  function. It gives us more accurate 

and sharp results. 

Now, let us add the function Ψ  to the data term as well as to the smoothness term 

and rewrite the energy functional (2.2.8): 
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or, reformulating the gradient: 
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and, taking into account (2.2.2): 
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Now let us derive the Euler-Lagrange equation for this energy functional. The data 

term of the Euler-Lagrange equation is given by: 
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And the smoothness term of the Euler-Lagrange equation reads: 
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( )zzdivF
dv

d
F
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d
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ϕ ,   (2.3.9) 

 

where 
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Now, having successfully accomplished the above calculations, canceled the 

common factor 2 we are ready to construct the Euler-Lagrange equation: 
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It looks a little bit more sophisticated than the one in (2.2.12), but gives much better 

results. When discretizing (2.3.10) we obtain a non-linear system of equations due to the 

functions )),(,,( vuzvuzξ  and )),(,,( vuzvuzζ . In that case we can refer to the time-

marching numerical scheme, which considers this equation as a steady–state of the 

following evolution: 
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It means, that there is some moment of time we will achieve the steady state, when 

function ),( vuz  does not change in time: 0→
∂
∂

∞→tt

z
. This is an iterative numerical 

scheme, and as usual it takes a lot of time to gain the steady state. In general the 

equation that should be solved is pretty big and it takes a lot of computations. When we 

need real-time performance, we should use some more sophisticated methods, like 

multigrid [Bra77], or problem linearization, which we will consider in the next chapters.  

In case when the object is situated too close to the observer, and thus the 

displacement of this object is very large, the variational method can stuck in local 

minima instead of converging to the global one. In that case we may not achieve the 
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desired solution. To solve this problem we use a coarse-to-fine level strategy [BAK91].  

We scale down the original stereo image to some coarse level and apply our method to 

this image. We have chosen such a down-scale level that our problem had unique 

solution close to the global minimum. This solution is used as the initial data for the 

next coarse level, which is closer to the fine one. We continue in such a manner until we 

finally reach the original scale. In the section 4.7 we will consider this process in detail. 

 

2.4 Summary 

 
In this chapter we have presented the general structure of variational methods for 

depth-map reconstruction, we have explained how to design energy functionals as well 

as the meaning of its parts: the data term and the smoothness term; how to derive the 

Euler-Lagrange equation from the energy functional. We have also briefly discussed 

constancy assumptions that help us construct more reliable data terms, penalizing 

functions which downweight outliers and lead to a non-linear diffusion process for 

smoothing the depth-map, but preserve edges and the problem of numerical solution. 

Moreover, the coarse-to-fine level strategy was described to avoid that the method gets 

stuck in local minima when we deal with short distant objects.  

In the next chapters we will refer to these foundations and consider these principles 

and approaches in more detail.   
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Chapter 3 

 

Matching Process 

 
Nearly everyone has used a camera and is familiar with its basic functionality: you 

indicate your desire to record an image of the world (usually by pressing a button), and 

the image is recorded onto a piece of film. One of the simplest devices for taking 

photographs in real world is called the pinhole camera. The main principles of the 

pinhole camera are described and its projection matrix which is derived in [PH04].  

In this chapter we will consider the modeling of data term and smoothness terms 

more closely.  Constancy assumptions are the core of any data term. Constructing and 

combining together constancy assumptions requires prior knowledge about the 

imaging device, which describes image quality, about the scene illumination, and object 

surfaces which describe incident light reflection. We will discuss in detail the 

advantages and the shortcomings of different constancy assumptions for the data term, 

which are frequently used in the literature. 

The design of the smoothness term is closely related to the type of the filling-in 

effect, which in its turn related to the diffusion process. Therefore, the different 

smoothness constraints are classified in accordance with the induced diffusion process. 

To show the connection between regularization methods and diffusion filters, we 

should discuss in this chapter different types of diffusivities and corresponding types of 

diffusion. 

The control of the matching process gives us a number of advantages like 

automatic controlling the quality of computations, quick error recovery, opportunity to 

speed up the solver, and others. We will discuss these controlling techniques as well in 

this chapter.  
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3.1 Correspondence 

 
We assume that the imaging system follows the pinhole model [PH04]. A pinhole 

camera consists of a light-tight box with a tiny hole at one end (figure 3.1). When the 

hole is uncovered, light enters this hole and falls on a piece of photographic paper that 

is affixed to the other end of the box. Although most cameras are substantially more 

complex than the pinhole camera, it is a convenient point for simulation.  

Therefore, the task of the camera simulator is to take a point on the image and 

generate rays along which light is known to contribute to that image location. Because a 

ray consists of an origin point and a direction vector, this is particularly simple for the 

pinhole camera model of figure 3.1: it simply uses the near plane for the origin, and the 

vector from the eye to the near plane as the ray’s direction. 

 

 
Figure 3.1: A pinhole camera. 

 

Another way to think about the pinhole camera is to place the film in front of the 

pinhole, at the same distance (figure 3.2) Note that connecting the hole to the film 

defines exactly the same viewing volume as before. Of course, this is not a practical way 

to build a real camera, but for simulation purpose it is a convenient abstraction. When 

the film (or image) plane is in front of the pinhole, the pinhole is frequently referred to 

as the eye. 

 

 
Figure 3.2: When we simulate a pinhole camera, we place the film in front of the hole at the near plane, 

and the hole is renamed the “eye”. 
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To project a three dimensional point ),,( zyxM  from real world into a two 

dimensional point ),( vum  on a camera’s film we need to transform 3D points 

coordinates ),,( zyx  via a projection matrix into 2D point coordinates ),( vu . The 

projection matrix describes a pinhole camera, its position and direction and has 

dimensions 43× . There are three coordinate systems involved – camera, image and 

world [HJ94]. 

 

   
Figure 3.3: Coordinate system’s transformation: Left: Perspective projection of a 3D point M onto image 

plane; Centre: The image coordinate system transformation; Right: Rotation and translation projection 

from world coordinates onto object coordinates. ([WMW07]) 

 

Camera. This coordinate system transformation constitutes the perspective 

projection (figure 3.3 left). This projection can be expressed as a linear mapping between 

homogeneous coordinates: 
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Image. The image coordinate system transformation gives us the intrinsic camera 

parameter description matrix J . This matrix provides the transformation between an 

image point and a ray in Euclidean 3D space. Matrix J  is a 33×  upper triangular 

matrix, called camera calibration matrix: 
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and its inverse matrix 1−J  is: 
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where uα , vα  are horizontal and vertical pixel sizes in [pixels/length] correspondingly 

and ),( 00 vu  is  the principal point, which is the point where the optic axis intersects the 

image plane [Rob95]. 

Once matrix J  is known the camera is termed calibrated. A calibrated camera is a 

direct sensor, able to measure the direction of rays like a 2D protractor. 

World. The world coordinate system transformation constitutes the extrinsic 

camera’s parameters description matrix D . This matrix provides the Euclidean 

transformation between the camera and world coordinates: 
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where jiR ,  are components of a rotation matrix R  and xt , yt , zt  are coordinates of the 

camera in Cartesian coordinate system. We consider cameras that are not rotated, i.e. 
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,
. Let us rewrite the matrix D  with respect to this assumption:  
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and its inverse matrix: 
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Now we can construct the projection matrix of our pinhole camera, which will 

consist of intrinsic camera parameters matrix J  and extrinsic camera parameters D : 
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To find pixels coordinates iu , iv  of the image produced by camera i  which 

correspond to pixel coordinates ju , jv  of image produced by camera j , we have to 

write down the correspondence equation:  
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where s  is a scaling parameter and z  is the depth-map ),( vuz  For more details see 

[RD96]. 

Let us substitute (3.1.2), (3.1.3) and (3.1.5), (3.1.6) into (3.1.8) and derive two 

formulas for coordinate’s expression (2.2.2): 
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    (3.1.9) 

 

We assume that pixel dimensions of any used camera is equal, i.e. j

u

i

u αα =  and  
j

v

i

v αα = , ji,∀ . Moreover, we assume that 00 =
iu  and 00 =

iv , i∀ . And now let us first 

consider the case when cameras shifted relative to each other only in x-direction equal 

to xt∆ .  Now we can rewrite (3.1.9) in a much simpler form:  
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     (3.1.10) 

 

 

3.2 Grey-value constancy assumption 

 
Constancy assumptions are the core of any data term. In the literature we can find a 

lot of different constancy assumption developed for one or another particular condition 

[HS81], [TP84], [BBPW04]. Let us describe them briefly. The constancy assumption on 

image brightness or grey-value constancy assumption is an assumption that the 

brightness of all the objects in scene is the same from any angle of view. This constancy 

assumption is the most popular one, since it was developed for any motion type and 

gives us a big amount of valuable data for small displacements. The major lack of this 

approach is a big sensitivity to illumination changes. The constancy assumption on image 

derivatives or gradient constancy assumption considers not a picture’s intensity in a 

pixel, but its derivative. Such an approach gives us very good results on illumination 

changes and on translational, divergent and slow rotational motion type. Another 

constancy assumption, based on higher order derivatives is called constancy of the 

Hessian. Both these derivatives – driven methods have the same disadvantage – they are 
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very inaccurate for fast rotational motion type. To eliminate this shortcoming, motion 

invariant constancy assumptions were developed. The constancy of the gradient norm or 

gradient magnitude constancy assumption is based on idea of creation motion invariant 

image features from “oriented” derivatives instead of imposing constancy on the 

(spatial) brightness gradient and therewith on its orientation. Correspondingly we can 

find rotation invariant features in Hessian – its trace and determinant: constancy of the 

trace / determinant of the Hessian. The constancy of the trace of the Hessian gives us the 

Laplacian constancy assumption, and the constancy of the determinant of the Hessian 

gives us the Hessian determinant constancy assumption. When working with colour 

images, we have to take in account the entire colour channels of image and the RGB 

colour brightness constancy assumption was developed. 

 

    
 

   
Figure 3.4: “Geometric primitives” scene: Top Left: Picture achieved by the left camera; Top Centre: 

Picture achieved by the right camera and represented as a 3D surface; Top Right: Picture achieved by the 

right camera; Bottom Left: Diagram of the light intensity of the 250-th line of the top left image; Bottom 

Centre: Correlation of the intensity diagrams; Bottom Right: Diagram of the light intensity of the 250-th 

line of the top right image. 

 

The grey-value constancy assumption will be the base assumption in our model. 

All the pictures of the stereo image are shot at the same moment of time; it means that 

we will not meet the problem of illumination changes. Let us consider the figure 3.4, 

where we can see the left and the right pictures of the stereo-image. As we know the 

photo-picture could be represented as a function, which takes as arguments the position 

of a point ),( vu  and returns the light intensity: ),( vuIIntensity = . Using such a function, 

we can build a 3 dimensional surface for each picture (see the top centre illustration of 

the figure 3.4). Such a representation is very useful: we can make a cut if this surface 

with the plane (yellow line in figure 3.4), and than plot the diagram of light intensity in 

this cut (see bottom left and right illustrations of figure 3.4). As usual we deal with 

discrete pictures, where the light intensity is encoded within [0; 255] interval, where 0 

means “no light” and represent black color, and 255 represents white color in grayscale 

images. As we can see on these diagrams we have blocks with the same light intensity, 

or brightness. For example, the green block, which represents the cube of our scene, has 

intensity of 45 in 250-th cut-line on both pictures. The same we can observe with red 
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block that have the same brightness on both pictures. That was the main idea of the 

brightness constancy assumption. At the bottom centre illustration we can observe how 

these two diagrams are correlated.  

Let us, taking into account (3.1.10), formulate mathematically this assumption as 

follows: 

 

0),(),( 21 =
∆

+− v
z

t
uIvuI xuα .    (3.2.1) 

 

Unfortunately, the constraint on 
z

txu∆α
 is rather inconvenient since it is nonlinear 

and implicit. When we construct a data term, we should overcome these problems. This 

is done via two different techniques: first order Taylor approximation [AK02] and linear 

interpolation method. Both of them are described in detail in section 4.4 as well as their 

advantages and shortcomings.  

Using the first order Taylor approximation we substitute the term ),(2 v
z

t
uI xu∆+

α
 

with ),(),( 22 vuI
z

t
vuI u

xu∆+
α

. Thus we have: 

 

0),(),(),( 221 =
∆

−− vuI
z

t
vuIvuI u

xuα .   (3.2.2) 

 

The data term built on this assumption: 

 
2

221 ),(),(),(_ 
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−−= vuI
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t
vuIvuItermData u

xu
brightness

α
.  (3.2.3) 

 

 

3.3 Gradient constancy assumption 

 
When we have no changes in illumination, the grey-value constancy assumption is 

very suitable. But it still depends on the assumption that all the objects in our scene 

have lambertian surfaces. But in real life we have to use more suitable illumination 

model. On the figure 3.5 we observe the case when brightness constancy assumption 

will not bring any success.  
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Figure 3.5: “Geometric primitives” scene: Top Row: Pictures achieved by the left, centre and right 

cameras correspondingly; Bottom Row: Diagram of the light intensity of the 250-th line of the images 

from top row correspondingly. 

 

Let us consider the Phong illumination model, which was suggested by Bui Tuong 

Phong in 1973 [PH04]. According to his model, the reflection from a surface is divided 

into three subcomponents: specular reflection, diffuse reflection, and ambient reflection 

(see figure 3.6). 

 

 
Figure 3.6: Graphical representation of Phong lightning equation. 

 

Mathematically this equation can be written as follows: 

 

SpecularDiffuseambient IvrInlIIntensity α)()( ⋅+⋅+= ,   (3.3.1) 

 

where l  is a vector, directed from a point of the surface to the light source and r  its 

reflected vector, n  is a normal vector to the point of the surface and v  is a vector 

directed from the point of surface to the camera (figure 3.7).  
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Figure 3.7: Vectors used in the Phong lighting 

equation of a surface point. 

 

As we can see the specular reflection term is depended on the camera’s position. 

That’s why the centre camera on the figure 3.5 is blinded by the spot of the reflecting 

light, and the picture became too bright. Now the intensity of green block at the bottom 

left diagram of figure 3.5 (equal to 45) does not equal to the same green block at the 

bottom centre diagram of figure 3.5 (equal to 150). Thus these diagrams became totally 

incomparable. 

To enhance our results we will add one more constancy assumption to our data 

term: the illumination invariant gradient constancy assumption. At the top row of the 

figure 3.8 we observe the result of fuzzy edge detector, applied to pictures of our stereo 

image. The fuzzy edge detector shows scaled to [0; 255] gradient magnitude in each 

pixel and represents derivatives of the image in corresponding diagrams. The main 

point of this idea is that under changing of the illumination conditions the object’s 

edges on pictures are preserved. 

At the bottom row of figure 3.8 we see the scaled gradient magnitude that 

represents the derivatives of the 250-th line of original pictures. They are pretty big at 

the object’s boundaries, and almost didn’t suffer from the blinding of the centre camera 

– we can easily correlate them. The gradient constancy assumption, built on this 

information helps us greatly in combination with brightness constancy assumption.  

 

   
 

   
Figure 3.8: “Geometric primitives” scene: Top Row: Fuzzy edge detector applied to the pictures achieved 

by the left, centre and right cameras correspondingly; Bottom Row: derivatives of the light intensity of 

the 250-th line of pictures achieved by the left, the centre and the right cameras correspondingly. 
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The gradient assumption with respect to (3.1.10) obtains the following form: 

 

0),(),( 21 =
∆

+∇−∇ v
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t
uIvuI xuα .    (3.3.2) 

 

Since the spatial gradient is a vector with two components, we obtain two 

constraints this time. They are given by 
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Using the same first-order Taylor approximation method like in brightness 

constancy constraint to get rid of implicitly, we achieve: 
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Squaring and adding them together produces the needed part of the data term: 
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  (3.3.5) 

 

 

3.4 Diffusion process 

 
Diffusion is a term from physics: diffusion is the net action of matter (particles or 

molecules), heat, momentum, or light whose end is to minimize a concentration 

gradient. A diffusion process is characterized by two standings. The first one is that the 

diffusion process always preserves the mass of matter [Wei98]. And the second is that 

the diffusion process equilibrates differences of matter concentration. These standings 

are easy to describe with two formulas: 

1. Fick’s law describes the equilibration of concentration differences: ugj ∇⋅−= . 

 Concentration gradient u∇  creates flux j , and g  is a diffusion tensor. 

2. Continuity equation describes conservation of mass: )( ugdivut ∇⋅=∂ . 
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In such a way, we have derived the diffusion equation: 

 

)( ugdivut ∇⋅=∂ .     (3.4.1) 

 

In a case of linear diffusion (when we do not consider local structure of matter, i.e. 

the diffusion tensor is equivalent to identity) we obtain the simplest diffusion process: 

uut ∆=∂ . 

To understand how it works, imagine a cap of milk. You can shake this cap 

somehow to create waves on the milk surface. But as soon as you put this cup on a 

table, the milk will start settling down and in some seconds you will have no waves 

anymore: 

 

 

 
Figure 3.9: UdS logo. Linear diffusion example: From left to right: original state and linear diffusion 

process with time. 

 

You still have the same amount of milk (mass preservation), but the difference 

between any two drops of milk at the surface is minimal – you have flat surface 

(equilibrium of concentration differences). In image processing, diffusion is very useful 

for image enhancement. For example – for denoising an image. When we want to get 

rid of high frequencies (noise or some small details) but preserve edges from blurring. 

Unfortunatly it is almost impossible to do this using simple linear diffusion.  

So, let us consider nonlinear diffusion. This process avoids delocalization and 

blurring of edges.  It is described with the following equation:  

 

),0())(( ∞×Ω∇⋅∇=∂ onuugdivut    (3.4.2) 

 

with stable initial and boundary conditions: 

 

).,0(0

;)()0,(

∞×Ω∂=∂
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onu

onxfxu

n

    (3.4.3) 

 

Function ()g  takes as an argument a fuzzy edge detector u∇  and should be chosen 

as a decreasing nonnegative function. It means that on the edges, where the image 

derivatives are high, low values of the function ()g  will inhibit diffusion. Now let us 
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suppose that we want to smooth the UdS, preserving its edges with help of diffusion 

process. And let us, with help of the following illustration, compare the best result of 

eliminating noise with linear diffusion process and, nonlinear diffusion process: 

 

 

 
Figure 3.10: UdS logo: Left: Linear diffusion. Right: Nonlinear diffusion. 

 

We can clearly see that in the right column, our owl has no plumage anymore but 

the edges are very good preserved [ALM92]. 

Singular diffusion filters lead to a piecewise constant images as it was shown in 

[WWS05]. As function ()g , diffusivity, we use singular diffusivities. As a prototype for a 

class of singular diffusivities we consider the family: 

 

p
u

ug
∇

=∇
1

)( ;   1≥p .    (3.4.4) 

 

In this chapter we will consider two singular diffusivities. Total variation (TV) 

diffusivity, that has interesting properties such as finite extinction time and shape-

preserving qualities – the case when 1=p : 
u

ug
∇

=∇
1

)( . For 1>p  the diffusion not only 

preserves edges but even enhances them. Balanced forward-backward (BFB) diffusivity – 

the case when 2=p : 
2

1
)(

u
ug

∇
=∇ . The most problems with singular diffusivities are 

that it is possible to have very small values of u∇  and in such cases our function ()g  

becomes unbounded. That implies numerical instability, and failure of solver. As a 

result, iterative numerical schemes may reveal slow convergence, and in general 

numerical errors can be amplified. In order to eliminate all these problems, it is 

common to regularize the diffusivity function by replacing it by the bounded 

diffusivity: 

 

( ) 222

1
)(

p

u

ug

ε+∇
=∇ ;  1≥p .   (3.4.5) 

 

As summary for the diffusion process description, let us consider the diffusion 

process on color images in figure 3.11 
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Figure 3.11: “Carrier-pigeon” scene: Top Left: Original image. Top Right: Linear diffusion with periodic 

boundary conditions. Bottom Left: Total variation diffusion; Bottom Right: Balanced forward – 

backward diffusion. (The original photo is taken from [WF07] and processed by the thesis author’s 

freeware application [WPX07]). 

 

Figure 3.11 demonstrates linear, total variation and balanced forward–backward 

diffusion. The elimination of noise with edge preservation (and even enhancement in 

case of BFB diffusion) is very good seen on Figure 3.12. Gradient u∇  is very sensitive 

to high frequencies, and all the pictures show only contours of the objects in scene. 

These images are the results of fuzzy edge detector processor with original image as 

initial data. At the top left picture we can observe not only contours but also a lot of 

high frequencies where spatial derivatives are high. At the top right image we have get 

rid of high frequencies, but all the edges are extremely blurred – we have lost a lot 

important information about objects geometry. At the bottom row we see no high 

frequencies, and all the object edges are good preserved. In case of balanced forward-

backward diffusion, we can even notice, that the fuzzy edge detector gave us more 

bright boundaries than in case of total variation diffusion, and even in case of original 

image. 
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Figure 3.12: “Carrier-pigeon” scene under the fuzzy edge detector: Top Left: Original image. Top Right: 

Linear diffusion with periodic boundary conditions. Bottom Left: Total variation diffusion; Bottom 

Right: Balanced forward – backward diffusion. (The original photo is original taken from [WF07] and 

processed the thesis author’s freeware application [WPX07]). 

 

3.5 Preserving discontinuities 

 
Let us consider formulae (2.3.5) and (2.3.9) more close. Comparing them, we can 

derive a connection between the smoothness term and the smoothness term of the 

Euler-Lagrange equation: 

 

)(),(_
2

zzztermSmoothness vu ∇Ψ⋅=ϕ ,    (3.5.1) 

( )zzdivtermSmoothness LagrangeEuler ∇⋅∇Ψ⋅=− )('2_
2

ϕ .  (3.5.2) 

 

The diffusion process, that will take place during the solution, and that is 

introduced by the smoothness term, is determined by the penalizing function Ψ . In 
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general function Ψ  takes two parameters: ),( zI ∇∇Ψ , and its derivative ),(' zI ∇∇Ψ  is 

called diffusivity. Let us discuss briefly describe different diffusivities, described in the 

literature [Bru06], [DKA95], [GR92] and corresponding diffusion processes.  

• Homogeneous diffusion is the simplest form of diffusion, based on linear diffusion.  

As a consequence, the resulting solution – depth-map will be homogeneously blurred 

and semantically important edges may be dislocated. As a penalizing function is used 

the Tikhonov regularizer: 
2

),( zzI ∇=∇∇Ψ , which corresponds to the homogeneous 

diffusion: uut ∆= . 

• Linear isotropic diffusion is a more advanced diffusion process, which is image – 

driven. It should be constructed in such a way, to respect discontinuities in initial stereo 

image by reducing smoothing at image boundaries. Let function )(sg  is a decreasing 

smooth function, then the penalizing function will be written as:  
22

)(),( zIgzI ∇⋅∇=∇∇Ψ . Such a penalizing function leads us to the linear isotropic 

diffusion: ( )zIgdivut ∇∇= )(
2

. The most disadvantages appear when we deal with high 

textured objects, which have more image boundaries. This gives over segmented depth-

maps. 

• Linear anisotropic diffusion is also image-driven diffusion, but in contrast to the 

linear isotropic diffusion, can provide smoothing along image edges. It is done with 

help of a regularized projection matrix )( ID ∇  on ⊥∇I , which in contrast to normal 

gradient is definite as follows: 







−

=∇ ⊥

u

v

I

I
I . The projection matrix )( ID ∇  has form: 

)(
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1
)( 2

22
III

I
ID T λ

λ
+∇∇

+∇
=∇ ⊥⊥ . The penalizing function ),( zI ∇∇Ψ  now has the 

following look: zIDzzI T ∇∇∇=∇∇Ψ )(),(  with corresponding diffusion process: 

( )zIDdivut ∇∇= )( . To understand how it works, we should realize that matrix )( ID ∇  

has two eigenvectors f∇  and ⊥∇f  with eigenvalues 
22
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0
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I

I
λ , 

2

1
)(lim 2

0
=∇

→∇
I

I
λ . And the anisotropic behaviour at image edges, i.e. 

when ∞→∇I : 0)(lim 1 =∇
∞→∇

I
I

λ , 1)(lim 2 =∇
∞→∇

I
I

λ . This approach gives better results than 

isotropic image-driven one, but still suffers from high-textured regions in images.  

• Nonlinear isotropic diffusion is very close to the linear isotropic diffusion, but 

instead of using boundary information from the initial image, it uses feedback from the 

evolution – still calculating depth-map. So, it is a depth-driven diffusion process, which 

determines by the following penalizing function: )(),(
2

zzI ∇Ψ=∇∇Ψ . Here function Ψ  

can be any increasing, differentiable, convex in its argument, and bounded. The 

corresponding isotropic nonlinear diffusion process: ( )zzdivut ∇∇Ψ= )('
2

.  
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• Nonlinear anisotropic diffusion is also exists for depth-driven process. It also has 

advantage of smoothing along edges of depth-map. It uses penalizing function as a 

trace of the matrix: )(),( TzztrzI ∇∇Ψ=∇∇Ψ . Such an approach leads to the anisotropic 

nonlinear diffusion: ( )zzDdivut ∇⋅∇= )( , where )(')( TzzuD ∇∇Ψ=∇ . If 1v , 2v  are the 

eigenvectors of Tzz∇∇  and 1µ , 2µ  the corresponding eigenvalues, then )( uD ∇  has 

eigenvectors 1v , 2v  with eigenvalues  )(' 1µΨ , )(' 2µΨ  and this is exactly the desired 

anisotropy. 

It is very difficult to use image-driven diffusion processes, since we deal with 

stereo-images, which are represented by a number of pictures. In this paper we use the 

homogeneous diffusion process and the nonlinear isotropic diffusion process. Linear 

diffusion is the simplest among diffusion processes, and could be applied to the wide 

variety of variational problems.  Substituting the Tichonov regularizer  

 
22 )( ssTichonov =Ψ      (3.5.3) 

 

into the formulae (3.5.1) and (3.5.2) we will have: 

 
2

),(_ zzztermSmoothness vu ∇⋅=ϕ ,     (3.5.4) 

( ) zzdivtermSmoothness LagrangeEuler ∆⋅=∇⋅=− ϕϕ 22_ .  (3.5.5) 

 

Using the nonlinear isotropic diffusion is a great improvement. It preserves and can 

even enhance edges in depth-map, and thus helps to segment different objects in scene. 

As penalizing function we will take the Charbonnier regularizer [CABB94]: 

 

2

2

2
22 212)( λ

λ
λ −+=Ψ

s
srCharbonnie     (3.5.6) 

 

and the Perona-Malik regularizer 

 

)ln()ln()( 222222 λλλλ −+=Ψ − ssMalikPerona .   (3.5.7) 

 

Let us first consider the Charbonnier regularizer. To understand how in works we 

should write down its diffusivity function )(' 2sΨ  and its flux function ss ⋅Ψ )(' 2 . Its 

diffusivity function: 

 

22

2 )('
s

srCharbonnie

+
=Ψ

λ

λ
    (3.5.8) 

 

and its flux function:  
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s
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Now let us consider the plots of these functions: 

 

  
Figure 3.13: Charbonnier regularization: Left: Corresponding diffusivity. Top Right: Corresponding flux 

function. 

 

If we think about 1D diffusion process, we have the following equation for the 

nonlinear isotropic equation:  

 

    ( ) ( ) uuuuuuuut zzzzzu )(')()(' 2 Φ=Φ=Ψ= .   (3.5.10) 

 

The diffusivity function is a monotonically decreasing function, see figure 3.13. 

From formula (3.5.10) we can see, that when we have an edge in out image, than its 

derivative becomes larger, and thus the diffusivity becomes smaller, attenuating 

diffusion. Also from the figure 3.13 we observe, that the flux function is monotonically 

increasing, it means that 0,0)(' ≥∀>Φ ss . Thus the right part of equation (3.5.10) is 

always positive and we have always smoothing of forward diffusion. 

Now let us consider the Perona-Malik regularizer [PM90] and compare it with the 

Charbonnier regularizer. The derivative of the Perona-Malik regularizer is: 

 

     
22

2
2 )('

s
sMalikPerona +

=Ψ − λ
λ

    (3.5.11) 

 

and its flux function:  

 

     
22

2
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s

s
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λ
.    (3.5.12) 

 

These functions are plotted at the figure 3.14. 

In contrast to the Charbonnier penalizer, the diffusivity function corresponded to 

the Perona-Malik penalizer falls faster (compare the cross points of the graph and 

lambda-line). And, what is more important, the flux function now is not monotonic. We 

observe that 0)(' >Φ s  for λ<s  and 0)(' <Φ s  for λ>s . It means that for λ<s  we have 
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forward diffusion process and thus smoothing, and for λ>s  we have backward 

diffusion process and thus edge-enchasing.  

 

  
Figure 3.14: Perona-Malik regularization: Left: Corresponding diffusivity. Top Right: Corresponding flux 

function. 

 

Discussing formulae (3.5.8) and (3.5.11) we must say that Charbonnier penalizer 

corresponds to the total variation diffusion, and Perona-Malik penalizer corresponds to 

the balanced forward–backward diffusion [BWSW03]. These theoretical computations 

explain the results, illustrated in figure 3.14. 

 

3.6 Controlling the matching process 

 
To control the matching process during the computation is a very important task, 

since even a small error at the beginning of international process can affect the final 

result significantly. As usual, scientists before starting the calculations define the setup 

control parameters (time step, smoothing parameters, etc.), which are kept fixed during 

the computations, start process and after that, gaining the result, estimate the relative 

error. Nonlinear variational methods can be very slow since they need time-marching 

numerical schemes that as usual waste too much time to converge. And such an 

approach, when we should wait till the end of calculations, makes them even more slow 

and useless for industry.  

Another very important role of the controlling the matching process is follows: if 

we find a method capable to estimate the speed of method’s convergence and if we 

know how to influence upon it, it appears to be possible us to interact with the iteration 

process on run. 

It is possible to control the convergence of variational method during the 

computation via estimating the energy functional after each (or after each N) iteration. 

This gives us a possibility of immediate computational error recognition and recovery. 

More flexibility gives us the possibility of automatic picking up setup control 

parameters. This approach, combined with controlling the matching process allows us 

to change these setup parameters automatically not only on setup and calculation 
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beginning, but even during the calculation. First of all, it gives the possibility to try 

different control parameters for problem iteration, and consequently fix up numerical 

problems on run. Second, it speeds up the convergence of the method greatly. 

The energy functional (2.1.4) we can rewrite in the following form: 

 

∑ ∑
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+=
width

u
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v

i
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u

ii zztermSmothnesszvutermDataSum
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)()()()( ),(_),,(_ ,  (3.6.1) 

 

where subscript )(i  denotes the iteration number. During the computations, solving the 

Euler-Lagrange equation, on each iteration we are finding the function ),()( vuz i .  In 

ideal case function ),()( vuz ∞  is our depth-map, and the functional (2.1.4), if the 

smoothness term was chosen properly, is minimal. By other words: 

 

 0)( → ∞→i
iSum .     (3.6.2) 

 

Also in ideal case we will have monotonous convergence, which can be written as 

two mathematical formulas: 

 

NjiSumSum jii ∈∀> + ,,)()( ,    (3.6.3) 

NkjiSumSumSumSum jkikijii ∈∀−>− ++++ ,,,)()()()( , (3.6.4) 

 

The formula (3.6.3) says us than the row )(iSum  is strictly monotonically decrescent: 

each subsequent member is smaller then preceding. The formula (3.6.4) guaranties us 

that the row )(iSum  converges to some definite value. We check both criteria on 

violation and thus have powerful tool of analyzing and controlling the matching 

process.

The energy functional representation (3.6.1) gives us also the reach material for 

relaxation methods, which definitely help to speed up convergence. For the further 

information refer to [Ter86]. 

Anyway, the representation (3.6.1) has some disadvantages. First of all it includes 

the smoothness term, which we need only for numerical solution of the Euler-Lagrange 

equation. The most important parts are the constancy assumptions, since they are the 

core of any energy functional. With this idea, using the main constancy assumption on 

image brightness, we can write down another formula for the row )(iSum : 
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Now let us discuss the technique of the controlling the matching process more 

closely. We have two criteria for it, let us call formula (3.6.3) the main criteria and 

formula (3.6.4) the secondary criteria. The violation of the main criteria we consider as a 

calculation mistake. In this case we try to repeat the last iteration with new parameters. 
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The violation of the secondary criteria we consider as an acceptable mistake. Having in 

mind the main criteria, we can formulate the concept of the convergence speed: 

 

Nji
j

SumSum
Speed

jii
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,,
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.   (3.6.6) 

 

In case of the convergence speed becomes smaller than a certain threshold, we may 

try to play with the parameters again, to find a better vector of minimization. The most 

interesting question is about the way how to change these parameters. Particularly, 

when we vary such constants like ρ  or λ  we receive another problem so the formula 

(3.6.5) will not give comparable )(iSum , but the point here – is to recover the calculation 

error in the case of the main criteria violation and to gain the more fast convergence in 

the case of convSpeed  became too small. Note that, using the fine-to-coarse levels strategy 

or warping technique leads to the whole problem changing and use the solution from 

the previous problem as initial data for the new one. Approximately the same we 

observe with the controlling technique.  

The criteria for the stopping the iteration process and the parameters varying 

strategy depend on the according algorithms and the implementation. In this thesis we 

use a heuristic parameters determination and adaptation block.  

 

3.7 Summary 

 
In this chapter we have discussed important theoretical topics that constitute the 

basis for stereo problems in image processing. The most important of them are 

mathematical models of cameras and scene illumination, diffusion processes and 

gradient filtering theory. Using matrix transformations and mathematical description of 

camera, we have derived correspondence equation, which binds any pixel of one 

picture of the stereo image with the pixel of another picture through the real 3D point of 

the world. Moreover this equation binds the pixel size with the real metric system.  

We have discussed the theory of diffusion processes and the theory of illumination 

to design and build data terms and smoothness terms for our energy functional. Also 

we have marked what kind of results are gained with using different data and 

smoothness terms and the ways how to control the solver during computations for fast 

error recovery and correcting the way the solution process flows. 

In the next chapters we will precede more close to practice, build and discuss 

numerical schemes, build the solver, achieve first results, and than step by step improve 

them. 
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Chapter 4 

 

Depth-Map Reconstruction with Two 

Cameras 

 
In this chapter we will come from the theory to the practice. Four different methods 

of the depth-map reconstruction are waiting to be considered and their advantages and 

shortcomings to be discussed. As a powerful tool to anlize the regularization behavior 

of different smoothness terms, the concept of an RnB pyramid is presented. Moreover 

the techniques, aforementioned in previous chapters, like multi scale technique and the 

technique that modifies the data term such that it becomes more robust will be 

described in detail.  We will also describe which practical case needs a particular 

technique or method. Then we come to the numerical schemes – the paragraph, where 

we will step by step derive and explain the working numerical schemes for linear and 

non linear Euler – Lagrange equations. All the discussions and conclusions in this 

chapter are about the two camera case; they are the fundament for multi – view depth-

map reconstruction, which will be considered in the next chapter. 

 

4.1 Depth-driven method vs. disparity-driven   

method 

 
For the reconstruction of the depth-map it is possible to use two different 

approaches. They are the depth-driven approach and the disparity-driven approach. To 

explain the difference between these approaches, let us consider the first equation from 

the system (3.1.10) for two cameras: 
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),( 11

12
vuz

t
uu xu∆+=

α
,     (4.1.1) 

 

here the function ),( 11 vuz  is the depth-map and the fraction 
),( 11 vuz

txu∆α
 is the disparity 

between two pixels from the different cameras, constituted by the projection of one 

world point. By other words, let us suppose that a world point ),,( zyxM  projects to the 

pixel ),( 111 vum  of the first camera and to the pixel ),( 222 vum  of the second camera. 

Accordingly to the system of equations (3.1.10) 21 vv =  (since the cameras are shifted 

among each other only horizontally) and the value of 
),( 11 vuz

txu∆α
 is the disparity in pixels 

between 1u  and 2u .  

The idea of the disparity-driven approach is to calculate the disparity map or optic 

flow field between the cameras and then calculate from it the depth-map, instead of 

calculating the depth-map directly. If we denote though ),(' 11 vuz  the disparity map, 

then the equation (4.1.1) will be rewritten as follows: 

 

     ),(' 1112 vuzuu +=      (4.1.2) 

 

and to achieve the depth-map from the calculated disparity map we will us the formula: 
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The disparity driven method has some ponderable advantages. First of all, it leads 

to the Euler – Lagrange equation which is linear, while the depth driven method leads 

to the non-linear equation [BCAB95]. Let us consider the energy functionals and the 

corresponding Euler – Lagrange equations. For the simplicity let us use only the grey-

value constancy assumption in the data term. The energy functional for the depth 

driven approach: 
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and its Euler – Lagrange equation:  
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This Euler – Lagrange equation still has implicitness in function 2I  and its 

derivative, and we can get rid of it, using the techniques of first order Taylor expansion 

or linear interpolation described in paragraphs 4.2 and 4.3. But we can already see that 
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due to the term 
2z

txu∆α
 it will be no possibility to build a linear numerical scheme. Now 

let us write the energy functional for the disparity driven approach: 

 

( ) dudvzvvuzuIvuIzE )()),,('(),()'(
22

21 ∇Ψ⋅++−= ∫∫
Ω

ϕ   (4.1.6) 

 

and its Euler – Lagrange equation:  

 

( ) ( ) 0')'(')),,('(),()),,('(
2

212 =∇⋅∇Ψ⋅++−+ zzdivvvuzuIvuIvvuzuI u ϕ ,  (4.1.7) 

 

here we have got rid of the term 
2z

txu∆α
 and now it is possible to choose a linear 

numerical scheme for solving this equation.  

Another advantage of the disparity-driven method becomes clear, if we look more 

carefully at the smoothness terms of the energy functionals. While theirs data terms are 

different, the corresponding smoothness terms are still almost the same. Pay attention 

that in case of the depth-driven approach we are smoothing the depth-map, while in the 

disparity-driven approach we are smoothing the disparity. Let us consider this 

difference in details. At this point to discuss the advantages and shortcomings of the 

approaches we will build a simple model – an artificial disparity field and the 

corresponding depth-map (figure 4.1). 

 

  
Figure 4.1: RnB Pyramid: Left: Disparity domain; Right: Depth domain. 

  

An RnB pyramid is a number of half – overlapping layers with different disparity or 

in other words with different depth – distance from an observer. The pyramid 

illustrates disparity/depth differences (gradients) between a layer and the background 

in the red point row and between consequent layers in the blue point row. Since in stereo 

images which are represented as a number of pictures, we deal with the pixels’ 

displacements, we built the RnB pyramid in disparity domain in such a way, that the 

displacement between any two adjacent layers is constant, and then translated it into 

the depth domain.  
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Now let us consider in plots and tables the differences between red and blue point 

rows of the RnB pyramid in depth domain and disparity domain. If we have N  layers 

iL  where ];1[ Ni∈  and 1L  is the background layer, we can define the disparity and 

depth values as follows: 

 

ii diz ∆⋅=' ,      (4.1.8) 
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where id∆  is the shift of layer iL  in pixels. Note, we use the constant layers shift: 

dd i ∆=∆ , ];1[ Ni∈∀  ( pixeld 1=∆  and 10=∆ xu tα  in figure 4.1). 

From formulae (4.1.8) and (4.1.9) we can derive the formula (4.1.3) what proves the 

correctness of the RnB pyramid principle. Moreover, using the formula (4.1.3) we can 

write down the equation, characterizing the correlation between the gradients on the 

RnB pyramid in depth and disparity domains: 
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Now let us return to the RnB pyramid. Since all the points of the red and blue point 

rows lie on the corner-edge of the RnB pyramid and the directional derivatives are 

equal there, we can write 2222
2 xyx zzzz =+=∇ . The gradient in the blue point row we 

calculate with the help of the following formulae: 
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and the gradient in the red point row we will calculate by means of the next pair of 

formulae: 
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Now let us illustrate the behavior of the gradient magnitude on the edges of far and 

near layers. Using formulae (4.1.11) – (4.1.14) we can build the table 4.1, substituting for 

the far column values of gradient magnitude with 1=i , and for near column values of 

gradient magnitude with ∞→i . With the help of the color we distinguish gradient 

magnitudes in the red or blue point rows. 
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Table 4.1: Gradient magnitudes on the RnB pyramid. 
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At table 4.1 we can see that the gradient is constant in the blue point row of the RnB 

pyramid in disparity domain and the gradient in the red point row linearly increases 

from layer to layer. Indeed, if we look once more at figure 4.1 we can see that the 

contrast between layers is constant and the edge between the 16-th layer and first one is 

much mire bigger than contrast between second and first layers. In depth domain we 

have a different picture. Here the gradient in blue point row not constant but has 

decreasing character from far to near layers and the gradient in red point row, as well 

as in disparity domain, increases but is bounded. Comparing these results with the 

figure 4.1 we make sure that the contrast between consequent layers decreases when 

coming from far to near layers and it is almost impossible to distinguish edge between 

the 16-th and 15-th layer. And the contrast between a layer and background is very 

good distinguished by an unarmed eye, it increases when coming closer to an observer 

and the contrast between 16-th and 15-th layer not bigger than four times of contrast 

between the second and the first layer.  

We would like to compare the values of const1 and const2 to understand the 

difference of the gradient behaviour on far situated objects. For this purpose we will 

derive the gradient correlation equation like (4.1.10) from equations (4.1.11), (4.1.12) for 

the blue point row: 
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  (4.1.15) 

 

and from equations (4.1.13), (4.1.14) for the red point row: 
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For the far layer, i.e. 1=i  we achieve the same formula for (4.1.15) and (4.1.16): 
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consequently 
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Now it is very important to investigate the smoothness process on red and blue 

point rows of the pyramid. Let us put the gradient magnitudes from formulae (4.1.11) – 

(4.1.14) in the Charbonnier regularizer (3.5.6) and plot it to show the contribution of the 

smoothness term to the energy functional: 
 

  
Figure 4.2: Charbonnier penalizer on gradient magnitude ( 025,0=λ ): Left: Argument: gradient 

magnitudes in the blue point row (blue graph) and the red point row (red graph) of the RnB pyramid in 

disparity domain; Right: Argument: gradient magnitudes in the blue point row (blue graph) and the red 

point row (red graph) of the RnB pyramid in depth domain. 

 

As we can see from the figure 4.2, the contribution to the energy functional of the 

smoothness term in depth domain is much larger than the contribution of the 

smoothness term in disparity domain. Moreover, the difference between values of red 

and blue graphs in depth domain for 16 pixels layer shift reaches almost the value of 1, 

when the same difference in disparity domain less then 0,2. It means, that the average 

deviation of the gradient magnitude in depth domain almost 5 times bigger than in 

disparity domain. Due to such a big deviation we are not afforded to reduce the 

smoothness parameter ϕ  too much. Also the plots prove the idea, described by 

formulae (4.1.10) and (4.1.17): when an object is far situated, the disparity in its stereo 

image 'z  is pretty small, then the value of the term 
( )4

22

'z

txu∆α
 becomes unbounded large 

and therefore especially at far objects the contribution to the energy functional of the 

smoothness term becomes too large in comparison with the contribution of the data 

term. In such a way all the far distant objects will be blurred into the background. 

Indeed, looking back to our RnB pyramid from figure 4.1, where we have pixeld 1=∆  and 



4.1 Depth-driven method vs. Disparity-driven method 

 

 

49 

10=∆ xu tα  and substituting these values into the formula (4.1.18), we calculate that 

12 25 constconst ⋅= ! Anyway we have to have in mind that the nonlinear behavior more 

problematic than scale. 

To summarize this discussion, let us represent the results of our research of the 

smoothness process on the RnB pyramid in table 4.2: 
 

Table 4.2: Smoothness process on edges of the RnB pyramid. 
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Overblurring Overblurring 

 

and some examples at the figure 4.3: 

 

   
 

   
 

 
Figure 4.3: “Poster” scene: Top Left: The first picture of the scene; Top Centre: Segmented object on the 

scene; Top Right: The eighth picture of the scene; Bottom Left: Result achieved with the disparity-driven 

method; Bottom Centre: True solution; Bottom Right: Result achieved with the depth-driven method. 

(The original scene taken from [WMU07]). 
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Figure 4.3 illustrates the practical difference between depth-driven and disparity-

driven approaches. At the bottom left image we can see that edge between the red and 

blue segments is preserved (for the color of segments refer to the top centre picture of 

the figure 4.1), while at the bottom right picture we observe this edge totally 

overblurred. At other hand the figure demonstrates that the nearest object in the 

“Poster” scene is not so blurry with the depth-driven method like in result achieved by 

the disparity-driven method. So the nearest layer does not look like whole segment. As 

a conclusion we can recommend to use the disparity-driven method for the depth-map 

reconstruction in further work, as it is the method, which has more advantages. 

 

4.2 First order Taylor expansion  

 
As we have discussed in the third chapter, the most problems in data term we have 

due to implicitness of the first term in formula (3.2.1). We have mentioned that there are 

several methods to overcome this problem and one of them is the very popular method 

of first-order Taylor expansion. To explain how it works, let us consider the Taylor 

series. 

In mathematics, the Taylor series is a representation of a function as an infinite sum 

of terms, calculated from the values of its derivatives at a single point. It may be 

regarded as a limit of the Taylor polynomials5. Taylor series are named in honor of 

English mathematician Brook Taylor (August 18, 1685 – November 30, 1731). 

The Taylor series of a real or complex function f  that is infinitely differentiable in a 

neighborhood of a real or complex number a , is the power series: 
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The Taylor series need not in general be a convergent series, but often it is. The 

limit of a convergent Taylor series need not in general be equal to the function value 

)(xf , but often it is. If )(xf  is equal to its Taylor series in a neighborhood of a , it is 

called to be analytic in this neighborhood.  If )(xf  is equal to its Taylor series 

everywhere it is called entire [WW07].  

A Taylor series can be used to calculate the value of an entire function in every 

point, if the value of the function, and of all its derivatives, is known at a single point. 

Uses of the Taylor series for entire functions include the partial sums of the series can be 

used as approximations of the entire function. These approximations are good if 

sufficiently many terms are included. 

Let us rewrite (4.2.1) in a form, than is more suitable for our problem: 

 

                                                 
5 The expressions that is constructed from one or more variables and constants, using only the 

operations of addition, subtraction, multiplication and constant positive whole number exponents. 
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Here we approximate the function f  in a point xx ∆+  within a neighborhood with 

radius x∆ . We assume that we deal with analytic function in this neighborhood and the 

neighborhood’s radius is small enough to neglect all the terms in the Taylor series 

except the first one, i.e. we assume that that the function f  is sufficiently smooth and 

the value of x∆  is sufficiently small. This approach gives us the first-order Taylor 

approximation of a function: 
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or in two dimensional case: 
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In such a way we have come to the formula (3.2.2). Now let us write down the 

simplest energy functional, that is used in this paper: 
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and its Euler – Lagrange equation:  
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We got rid of implicitness, but the Euler – Lagrange equation is still non linear. So, 

we can find the solution to the equation (4.2.6) as a steady-time state of the following 

differential equation: 
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here we omit the functions I  arguments for simplicity and introduce an artificial time 

parameter t .  

To consider the disparity–driven method with the first-order Taylor 

approximation, let us rewrite the energy functional (4.1.6) using the formula (4.2.4) and 

Tichonov regularizer in smoothness term: 
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and its Euler – Lagrange equation:  
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( ) 0),(),('),(),(),( 2212 =∆⋅+−− zvuIvuzvuIvuIvuI uu ϕ .   (4.2.9) 

 

Equations like (4.2.7) are solved with help of time-marching numerical schemes and 

equations like (4.2.9) being linear, are possible to solve with the help of fast linear 

numerical schemes. We will consider this numerical schemes and discretization 

techniques in paragraphs 4.5 and 4.6. 

The method of the first order Taylor expansion has some ponderable 

disadvantages. First of all it follows the assumptions that the value 
z

txu∆α
 (or 'z ) is 

sufficiently small, which is not obliged to be always true. This limitation leads us to 

another problem with implementing the method of coarse levels, which implies big 

disparities at the finer levels. This problem is described in detail in paragraph 4.7. 

 

4.3 Linear interpolation of data term  

 
Another approach to get rid of implicitness in data term is the method of linear 

interpolation. This method related closer to numerical schemes and deals with the 

discrete data. In practice our pictures of a stereo image ),( vuI i  are represented as a two-

dimensional arrays, or discrete functions: RvuI i a
++ Ν×Ν:),( . By another words, 

arguments of these functions in discrete case must be integers greater or equal to zero.  

The value Q
z

txu ∈
∆α

 is rational, hence the value of Q
z

t
u xu ∈

∆
+
α

 is rational as well. To 

overcome this problem we apply the linear interpolation [Mei02]. 

The main idea of the method of linear interpolation is to represent the term 

Q
z

txu ∈
∆α

 as a sum of two numbers: integer +Ν∈A  and Rb∈ , such that 1<b . Thus we 

have: 
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using the linear interpolation we have: 

 

( ) )),((),()1(, vbsignAuIbvAuIbvbAuI ++⋅++⋅−=++ .  (4.3.2) 

 

This approach admits to still having implicitness, but it excludes any kind of 

limitation on value of 
z

txu∆α
 and could be considered as a kind of “incremental 

calculation”. Moreover we proof that the method of linear interpolation is more general, 

and hence more useful than the method of first order Taylor expansion.  
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Theorem 4.1: if the value of 
z

txu∆α
 is small enough, then method of linear 

interpolation is identical to the first order Taylor expansion.  

Proof: if 1<<
∆
z

txuα , then, since bA
z

txu +=
∆α

, we have 0=A  and 
z

t
b xu∆=

α
. 

Now we can write: 
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Now let us write the energy functional and then derive its Euler – Lagrange 

equation with data term of the Euler – Lagrange equation interpolated with help of the 

linear interpolation: 
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and its Euler – Lagrange equation:  
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Now we are ready to apply the linear interpolation to the data term of the Euler – 

Lagrange equation. Since we calculate the derivatives via finite difference numerical 

scheme, we know, that the function 






 ∆
+ v

z

t
uI xu

u ,2

α
 is a piecewise constant function, 

so we assume that ),(),(, 222 vAuIvbAuIv
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As in (4.2.6) we have got a nonlinear equation. So we will use the time-marching 

numerical scheme to solve.  

 

( ) ( ) ( )( )

t

z
z

vbsignAuIbvAuIbvuI
z

t
vAuI xu

u

∂
∂

=∆⋅+

++−+−−
∆

+−

ϕ

α
),(,)1(),(, 22122

  (4.3.6) 

 

To consider the disparity–driven approach with the linear interpolation method, let 

us rewrite the energy functional (4.1.6) with Tichonov regularizer in smoothness term: 
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and its Euler – Lagrange equation:  

 

( ) 0')),,('(),()),,('( 212 =∆⋅++−+ zvvuzuIvuIvvuzuI u ϕ .   (4.3.8) 

 

Now we define ''),(' bAvuz +=  and apply formula (4.3.2): 

 

( ) 0')),'('('),'()'1(),(),'( 2212 =∆⋅+++−+−−+ zvbsignAuIbvAuIbvuIvAuI u ϕ . (4.3.9) 

 

Let us now summarize the last two paragraphs. We have derived four different 

Euler–Lagrange equations: (4.2.6), (4.2.9), (4.3.5) and (4.3.9) and we can combine the 

data terms of the Euler – Lagrange equations in the following table: 

 
Table 4.3: Data terms of Euler – Lagrange equations. 

 First-order Taylor 

approximation 
Linear interpolation 

Depth  
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Results, according to the table 4.3 are depicted at figure 4.5. The background object 

in the scene (red layer in the top centre picture of figure 4.5) has shifted less than 1 pixel 

and the nearest object in the scene (cyan layer in the top centre picture of figure 4.5) has 

shifted more than 2 pixels. At the left middle and bottom pictures of the figure 4.5 we 

observe that the first order Taylor approximation, as it was predicted, can not handle 

with big disparities for the depth-driven method as well as for the disparity-driven 

method: the cyan layer does not seen at all, and the yellow and magenta layers have 

numerous mistakes – outliers values, which are depicted with bright yellow or dark 
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blue colours at the figure. The results, achieved with the linear interpolation method 

show good performance. The depth driven method is characterized by the overblurred 

background as it was described in the first paragraph of this chapter. We can conclude 

that the linear interpolation method may deal with much more bigger displacements 

than the first-order Taylor approximation. Experiments show that the linear 

interpolation method successfully handles displacement till 4 pixels, while the first-

order Taylor approximation can give good results with displacements not bigger than 2 

pixels and require more accurate and heavy coarse levels technique than the linear 

interpolation method. 

 

   
 

   
 

   
 

 
Figure 4.4: “Barn1” scene: Top Left: The first picture of the scene; Top Centre: Segmented object on the 

scene; Top Right: The eighth picture of the scene; Middle Left: Result achieved with the depth-driven 

method and first-order Taylor approximation; Middle Centre: True solution; Middle Right: Result 

achieved with the depth-driven method and linear interpolation; Bottom Left: Result achieved with the 

disparity-driven method and first-order Taylor approximation; Bottom Centre: True solution; Bottom 

Right: Result achieved with the disparity-driven method and linear interpolation. (The original scene is 

taken from [WMU07]). 
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4.4 Penalization in the data term  

 
To control outliers in data term we will use a very popular technique of data term 

penalization. After we have constructed the data term, using suitable constancy 

assumptions, it is possible to make it more robust. Till this moment we considered data 

terms that penalize deviations from constancy assumptions in a quadratic way, to 

modify it to be more robust we will use non quadratic penalisation strategy which 

renders the estimation more robust with respect to violations of the model assumption 

like appearing or occluding objects. The main idea of this strategy is to penalize outliers 

less severely than in quadratic setting.  

For the regularization of data term we will use penalizing functions like (2.3.4), or 

particularly saying the same penalizing functions that we already use for smoothness 

term: Tichonov penalizer (3.5.3), Charbonnier penalizer (3.5.6) and Perona-Malik 

penalizer (3.5.7). The only difference between the penalizing functions of data and 

smoothness terms will be the index: “d” for data term and “s” for smoothness term: 

 
222 )( oo ss λ+=Ψ , },{ sdo∈ ,   (4.4.1) 

 

or by another words, different parameter λ . 

Let us plot in figure 4.5 the graphs of the corresponding penalizing functions. We 

know that the quadratic and Charbonnier regularizers are convex in s , what leads to an 

opportunity for building simple globally convergent algorithms [AL95]. Apart from 

them we also have Perona-Malik regularizer which, as we can see, is not convex, and 

using it in data term we can not guarantee well-posedness for the problem of the depth-

map reconstruction. Anyway such penalizers are more robust and result in energy 

functionals that have multiple minima [BA96]. Also pay your attention at the range of 

the co-domain of the functions plotted in figure 4.5. 

 

   
Figure 4.5: Comparison of different penalizing functions: Left: Tichonov (quadratic); Centre: Charbonnier 

(total variation) ( 025,0=λ ); Right: Perona-Malik (balanced forward-backward) ( 025,0=λ ); 
 

We will consider the whole data term as one entity that represents all constancy 

assumptions that are imposed on the image data. It means that all assumptions are 

robustified jointly – by applying a single robust function to the complete data term. 
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Such an approach is called joint robustification. Schematically we can illustrate the 

technique of data term regularization in the following formula: 
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4.5 Time marching numerical scheme  

 
Now let us build the implicit time marching numerical scheme for our problem. 

First of all let us write the energy functional with the data term built on grey-value 

constancy assumption and gradient constancy assumption with help of regularization 

and the smoothness term built with the help of a regularization function: 
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we decompose the second component of the data term: 
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Using the formula (4.5.2) we can rewrite the energy functional (4.5.1) in the 

following form: 
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Now let us apply the first-order Taylor expansion technique and rewrite the energy 

functional (4.5.3) omitting the function argument indexing: 
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And now we are ready to derive the Euler – Lagrange equation in meaning of the 

time marching scheme: 
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Now let us discretize the data term of the Euler – Lagrange equation and the 

smoothness term of the Euler – Lagrange equation separately, and then combine the 

results into the desired numerical scheme. To precede let us first of all introduce some 

notations for simplicity. We will replace the long diffusivity function by the short 

notation: 
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jiji gz ,
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Next, let *z  will be the next depth-map state, i.e. the state at  the next iteration step, 

and z is the current state of the depth-map, i.e. the state at the current time. Then the 

forward approximation of the time derivative could be written as follows: 
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where τ  is the time step and indexes ji,  denote the current depth-map element, or by 

another words the array indexes.  

We will start with the data term of the Euler – Lagrange equation discretization. 

Here for the simplicity, we designate the whole argument of the diffusivity function in 

data term of the Euler – Lagrange equation through one term: 
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And now let us write down the discretized data term of the Euler – Lagrange 

equation: 
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Now let us proceed with the smoothness term of the Euler – Lagrange equation 

discretization. For this purpose let us rewrite it in the following form: 
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the next step is to discretize the term ( )
ujijiu zg )( ,, ⋅∂ : 
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The term ( )
vjijiv zg )( ,, ⋅∂  we discretize in the same way. Now we assume that the 

grid steps in u and v  directions are equal to 1: 1=∆=∆ vu ; so we can rewrite the 

formula  (4.5.10): 
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Of course when we are using the Tichonov diffusivity where jig ji ,:1, ∀= , we get 

the standard Laplacian discretization: 
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Now, using the discrete versions of the data and smoothness terms of the Euler – 

Lagrange equation (4.5.6), (4.5.9) and taking all the terms jiz ,  in its smoothness term 

from the next time step we can rewrite the discrete version of the equation (4.5.5): 
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Rearranging all the *

, jiz  to the left part of the equation (4.5.14) and all the jiz ,  to the 

right part we achieve the modified explicit time marching numerical scheme: 
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The analogous semi-implicit time marching numerical scheme for the non linear 

Euler – Lagrange equation but for the linear interpolation method could be achieved 

from the equation (4.5.15) using the table 4.3. Having in mind (4.3.1) we can write: 
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In this notation the term jiForma ,  will accept the look: 
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The discretized smoothness term of the Euler – Lagrange equation was not changed 

at all, we only corrected the data term of the Euler – Lagrange equation. The process of 

discretizing and building the numerical scheme for the linear interpolation method is 

identical to the same process for the first order Taylor expansion. 

 

4.6 SOR numerical scheme  

 
When we are going to discretize a linear differential equation, it is possible for its 

numerical scheme use the Successive Over Relaxation technique or SOR scheme, which 

speeds up the convergence of the numerical algorithm greatly. We will focus on the use 

of an iterative method which lends itself to the opportunity to apply Cartesian 

topology. The simplest of iterative techniques is the Jacobi scheme and we will start the 

derivation of our numerical scheme according to it. While the Jacobi iteration scheme is 

very simple and parallelizable its slow convergent rate however renders it impractical 

for any "real world" applications. One way to speed up the convergent rate would be to 
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"over predict" the new solution by linear extrapolation. This is the main idea of the 

Successive Over Relaxation scheme. 

Now let us build a linear numerical scheme for our problem. First of all let us write 

the energy functional with the data term built on grey-value constancy assumption and 

gradient constancy assumption with help of regularization and the smoothness term 

built with the help of a regularization function: 
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like before in (4.5.2) we  decompose the second component of the data term: 
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Using the formula (4.6.2) we can rewrite the energy functional (4.6.1) in the 

following form: 
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Now let us apply the first-order Taylor expansion technique and rewrite the energy 

functional (4.6.3) omitting the function argument indexing: 
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Then we are ready to derive the Euler – Lagrange equation: 
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Like in the previous paragraph we will consider the data and smoothness terms of 

the Euler – Lagrange equation separately. We will use the same notation (4.5.6) from the 

paragraph 4.5 and the same discrete smoothness term of the Euler – Lagrange equation 

(4.5.12). Discretizing the data term of the Euler – Lagrange equation we will use the 

designation similar to (4.5.8): 
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In such a way let us write down the discretized data term of the Euler – Lagrange 

equation: 
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Now, using the discrete versions of the data and smoothness terms of the Euler – 

Lagrange equation (4.6.7), (4.5.12) we can rewrite the discrete version of the Euler – 

Lagrange equation (4.6.5): 
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Having in mind notation (4.5.7) we will build Jacobi iteration scheme by choosing 

all the terms jiz ,'  from the discretized Euler – Lagrange equation except the argument of 

()datag function from the next iteration step:  
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and rearrange them to the left side of the equation (4.6.8): 
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This time it will not be so easy to derive the analogues Jacobi iteration scheme for 

the linear interpolation method because we have to split 'z  onto 'A  and 'b  and take 'b  

from the next time step, leaving 'A  at current time step. We should continue step by 

step, beginning from the (4.6.8). According to the method of the linear interpolation we 

chose two numbers 'A  and 'b  such that jizbA ,''' =+ and described in paragraph 4.3. 

Now, using the table 4.3, and having in mind (4.3.1) we can rewrite the equation (4.6.8):  
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Then we build Jacobi iteration scheme by choosing all the terms 'b  from the 

discretized Euler – Lagrange equation except the argument of ()datag function from the 

next iteration step:  
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Deriving the equation (4.6.11) we used the proof of the theorem 4.1. Now let us 

rearrange all the 'b  to the left side of the equation: 
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In this notation the term jiForma ,'  will accept the look: 
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And the new value of the disparity field we can find using the following formula: 

 

*''*' bAz += .     (4.6.14) 

 

Pay your attention that the value of *'b  is not obliged to satisfy the criteria: 1*' <b . 
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To come now to the SOR numerical scheme we make the following steps: 

1. Make initial guess for jiz ,'  at all interior points ),( ji . 

2. Define a scalar nw  )20( << nw . 

3. Apply equation (4.6.9) or (4.6.12) to all interior points ),( ji  and call it jiz ,' . 

4. jinjinji zwzwz ,,, ')1('*' −+= . 

5. Stop if prescribed convergence threshold is reached, otherwise continue 

on next step. 

6. jiji zz ,, *'' = . 

7. Go to Step 2. 

Note in the above that setting 1=nw  recovers the Jacobi scheme while 1<nw  

underrelaxes the solution. Ideally, the choice of nw  would be such that it provides the 

optimal rate of convergence and is not restricted to a fixed constant. As a matter of fact, 

an effective choice of nw , known as the Chebyshev acceleration, is defined as 

[WMW07]: 
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Note that the numerical scheme (4.6.12), (4.6.13) with 0'=A  and '' zb =  becomes 

identical to the numerical scheme (4.6.9), (4.6.6). The same we observe with the time-

marching numerical scheme: the scheme (4.5.16), (4.6.17) with 0=A  and zb =  turns into 

the scheme (4.5.15), (4.5.8). 

 

4.7 Coarse-to-fine levels technique  

 
The coarse-to-fine strategy follows two main aims. The firs aim is to solve the 

problem of the multiple minima in the energy functional and the problem of avoidance 

of local minima during the iteration process. And the second aim is to tackle the 

problem of large displacements. First we shell tell how to build the coarse instances of a 

picture and discuss the strategies of implementation and after that we shell consider the 

aims of the coarse-to-fine levels technique in detail. 

For the purpose of the implementation technique the literature offers us two 

different strategies: the scale-space focusing method that considers the problem at different 

smoothness scales, keeping the picture’s resolution unchanged; and the multiresolution 

technique that considers the problem at different resolution levels [MP98]. In this paper 
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we will use the multiresolution technique since it is much more efficient from the 

computational point of view. The only lack of this technique that we should take care 

about aliasing problem during downscaling a picture. But this lack could be easily 

eliminated with help of the bilinear interpolation. 

 

  
Figure 4.6: Multiresolution coarse levels pyramids: Left:  2D example; Right: Comparison of the 

arithmetic pyramid (red) and the geometric pyramid (blue). 
 

At the figure 4.6 we can see an example of a coarse levels pyramid, built from a 

single image and its downscaled instances. At the top of this pyramid the coarsest level 

is situated and at the bottom – the fine level, the original picture. If we have N  coarse 

levels, then the fine level will be the first coarse level and the coarsest one will be the 

N -th coarse level. The depth-map reconstruction process becomes with this technique 

an iteration process: we reconstruct a depth-map on a coarse level image and then use 

this reconstructed depth-map as initial map for the next coarse level. As initial map for 

the coarsest level we take a plane which has constant depth values for all the objects in 

scene, which is better satisfies the Euler – Lagrange equation. This plane could be 

chosen by the simple looking though the suitable depth values.  

When we have the original picture, to build the pyramid, illustrated in figure 4.6, it 

is enough to choose the number of coarse levels and the dimensions of the picture in the 

coarsest level. It is very important to get the first depth-map from the coarsest level, 

because it will be a fundament for all the following computations. That’s why the best 

choice of the dimensions of picture at the coarsest level is such choice where the largest 

displacement in optic flow will be sufficiently small. 

Let the width of the original picture will be designated through 1width  and the 

width of the picture at the coarsest level – Nwidth . Then the resolution of the picture at 

coarse level i  could be found with the help of the following formulae: 
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As we have mentioned at the very coarse levels we build the fundament for all the 

subsequent calculations. Another approach for calculating the picture dimensions on a 

coarse level, which improves our fundament, can be expressed in the following two 

formulae for picture dimensions: 

 

.

;

1

1

i

height
height

i

width
width

i

i

=

=
     (4.7.2) 

 

This approach guaranties that the picture’s resolution at top layers of the pyramid 

will increase slowly, which consequently allows us to gain better results at the 

beginning of iteration coarse-to-fine process. And at the bottom layers of the pyramid 

we have large resolution increase, what compensates the small speed at the beginning. 

The coarse levels pyramid, built by the rule of formulae (4.7.1) we will call arithmetic 

pyramid and the coarse levels pyramid, built with help of formulae (4.7.2) – geometric 

pyramid (figure 4.6, right picture). 

The number of layers N  should be chosen in such a way, that the width increment 

be smaller or equal to the width of the picture at the coarsest level. It will guarantee that 

the displacement from coarse level to coarse level will not increase more than in two 

pixels. 

 

N
N width

N

widthwidth
≤

−
−

1

1 ,    (4.7.3) 

 

or in other notation N  should satisfy the criteria: 

 

     
Nwidth

width
N 1≥ .      (4.7.4) 

 

The coarse-to-fine level technique fights the problem of the variational method 

getting stuck in local minima. As we know, the main idea of variational methods is to 

find unknown function which minimizes energy functional. Since as usual an the 

energy functional is not convex and may have multiple minima but only one global 

minimum, the initialization decides to which minimum the iteration process converges. 

And as usual it is a local minimum, not the desired global one. Using coarse-to-fine 

levels strategy makes the local minima with sufficiently small spatial extent vanish at 

coarser scales and can thus be avoided. How it works we can observe at figure 4.7. 

When we have large displacements (more than 4 pixels) in a stereo image, none of 

the methods described in this chapter could handle with them, starting from a constant 

depth-map as initial data. The coarse-to-file levels technique starts with the variational 

process on a coarse instance of the original picture, where the displacement much 

smaller (less then 4 pixels).  Coming from a coarser level to a finer level, we have the 

initial depth-map, calculated from the previous step, and thus we just step by step 

increase the displacement and recalculate the depth-map with better accuracy. As we 
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know the linear interpolation method precedes any large displacement, but the first 

order Taylor expansion method – does not. In order to use the technique of coarse-to-

fine levels with the method of first order Taylor expansion we ought to use moreover 

the warping methods. 

 

  
Figure 4.7: Minimization using coarse-to-file levels strategy (blue) and without (red) to the global 

minimum (green): Left:  Global minimum found; Right: Useful local minimum found. 
 

Warping denotes the distortion of the image sequence which is required for the 

compensation for the already computed motion. So far this technique has only been 

justified on an algorithmic basis: In general, it was argued that it makes sense to embed 

optic flow approaches for small displacements into a coarse-to-fine framework, since 

large displacements become smaller at coarser levels and thus allow for an accurate 

estimation with linearized model assumptions. This, of course, is true. However, as we 

have seen, this warping strategy can also be derived as hierarchical fixed point iteration 

for minimising the energy functional of a variational approach for large displacements, 

i.e. for the energy functional based on constancy assumptions without linearization. 

This in turn, provides a theoretical justification of the warping technique [BBPW04]. 

 

4.8 Summary  

 
In this chapter we have considered four methods for the depth-map reconstruction: 

the depth-driven method, the disparity-driven method, the method of the first order 

Taylor expansion and the method of linear interpolation. We discussed the theoretical 

properties of these methods and proved them on certain experiments. The disparity-

driven method gives better results then the depth-driven: it leads to a simpler and faster 

converging numerical scheme and preserves discontinuities at far-situated objects. The 

linear interpolation method is an extension of the first order Taylor expansion method 

and can deal with more then twice bigger displacements than its “small brother”. 

Moreover the linear interpolation method does not require awkward warping methods. 

Thus in future work of extending our model to multiple cameras (more than 2), we will 

use the disparity-driven method with the linear interpolation method for linearization, 

coarse-to-fine levels technique to avoid local minima and handle large displacements. 
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Chapter 5 

 

Multi – View Depth-Map 

Reconstruction 

 
This chapter extends all the theory for two cameras to the case of multiple cameras. 

We discuss the multi – view model and then in the second section we derive a 

numerical scheme for it. Thereby we consider only the method of linear interpolation 

for the disparity approach as this method gives the most reliable results.  

 

5.1 Multiple data terms  

 
Till this moment we have being considering the depth-map reconstructions 

methods which are based on information from only two cameras. By other words, 

having any two pictures from different cameras, we can build a data term for an energy 

functional. In the case of N  cameras, choosing any two of them, it is possible to build 

)!1( −N  different data terms. The main idea of the extension of our model for 2 cameras 

to the model for N  cameras is to sum all the possible data terms together and thus 

constitute one monolith data term. As illustration, let us rewrite the energy functional 

(2.2.8) for case of multiple cameras: 
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In this paper we make some simplifications. First of all we do not consider all the 

)!1( −N  possibilities. Instead of that we chose from N  cameras one base camera and 
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consider all the possible pairs of cameras with the base one. It will give us only )1( −N  

different data terms, what will reduce computational efforts greatly.  

Another simplification is that all the cameras are equidistantly situated at one 

horizontal line and we deal with odd number of cameras, i.e. 12 += nN . So we can 

chose as the base camera the centre one with index 1+n . Using the formula (3.1.10) we 

can rewrite the energy functional (5.1.1): 
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Here we start summing the data terms from the outer cameras and finish with the 

centre cameras (figure 5.1).  

 

 
Figure 5.1: Multi – view cameras’ position example. 

 

At the figure 5.1 we observe the case of 2=n : we have two left, two right and one 

centre camera. According to the formula (5.1.2), first we consider the disparity between 

the 2-ns, 4-th and centre cameras and then between 1-st, 5-th and centre cameras, where 

the disparity is doubled. 

 

5.2 Numerical scheme  

 
The formulae in this paragraph will we very long and to save some paper we 

introduce the following notation: 
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Let us start with the energy functional for the disparity-driven approach: 
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as usual we open the gradient notation and receive the following expression: 
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According to the variational method we derive the Euler – Lagrange equation: 

 

( )
( )

( )
( )
( )

( )
( ) .0)('

)1(

)1(
)1(

)1(

)1(
)1(

)1(

)1(

)(

2

1

)1(

21

)1(

22

)1(

1

)1(

)1(

21

)1(

22

)1(

1

)1(

)1(

21

)1(

22

)1(

1

)1(

=∇⋅∇Ψ⋅+








































∂−∂∂⋅−+

+∂−∂∂⋅−+−
⋅Θ−

+










∂−∂∂⋅−+

+∂−∂∂⋅−+−
⋅Θ−

+










−∂⋅−+

+−∂⋅−+−
⋅Θ

∑
=

−++
−+

−++
−+

−+−
+

−+−

−++
−+

−++
−+

−+−
+

−+−

−++
−+

−++
−+

−+−
+

−+−

zzdiv

IIIkn

IIIkn

IIIkn

IIIkn

IIIkn

IIIkn

Formag
n

k

zknu

knv

u

nv

zknu

knvu

zknu

kv

u

nv

zknu

kvu

zknu

knu

u

nu

zknu

knuu

zknu

ku

u

nu

zknu

kuu

zknu

kn

u

n

zknu

knu

zknu

k

u

n

zknu

ku

k

ϕ

 (5.2.4) 

 

Here we have denoted: 
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To apply the method of linear interpolation we chose two set numbers +Ν∈kA , 

Rbk ∈ , ];1[ nk∈∀ , such that 1<kb  and kk bAzkn +=−+ )1( . In such a manner we can 

also express the disparity field: 
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now let us rewrite the equation (5.2.4): 
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or 
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According to the (5.2.6) it is possible to have n  different expressions for the 

disparity field. So in the formula (5.2.8) let o  be any of the values from ];1[ n . 
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At this point we should agree to approximate all left cameras’ 
u

vuI k

∂
∂ ),(

 for 

)1;1[ +∈∀ nk  via backward difference scheme and all right and the centre cameras’ 

u

vuI k

∂
∂ ),(

 for ]12;1[ ++∈∀ nnk  via forward difference scheme. Thus we can write: 
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Let us introduce further notations: 

 

jijir ggg ,,1 += + ; 

jijil ggg ,1, −+= ; 

jijiu ggg ,1, += + ;     (5.2.10) 

1,, −+= jijid ggg ; 

jijijijijic gggggg ,1,1,,1,1 4++++= −+−+ .  

 

Please, pay attention that dulrc ggggg +++= . Now let us rewrite the equation 

(5.2.9): 
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The equation (5.2.11) is linear. It means that will be fulfilled with any fixed k . Thus 

we can get rid of the sum on k  in this equation and achieve n  different equations for 

different k . Than we resolve the equation about b : 
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for ];1[ nk∈∀ .  

Using the formulae (5.2.12) and (5.2.6) let us write the formula for the disparity 

field from the next time step: 
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for ];1[ nk∈∀ .  

Where the notation (5.2.5) in terms of linear interpolation approach reads: 
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With the help of formulae (5.2.13), (5.2.14) and (5.2.10) we can calculate n  different 

disparity fields, which are the partial solutions for the certain set of cameras (see figure 

5.1) To achieve the general solution disparity field, which corresponds to all the defined 

cameras and provide the interaction between the partial disparity fields, we sum up 

weighted values of them together: 
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∑
=

⋅=
n

k

kk vuztvuZ
1

),(),( , where  ∑
=

=
n

k

kt
1

1;   (5.2.15) 

 

here ),( vuZ  denotes the general solution and ),( vuzk  denote partial solutions. In the 

experiments, we always use constant weighted coefficients 
n

tk
1=  , ];1[ nk∈∀ . 

 

5.3 Summary 

 
We have constructed the multi – view mathematical model for the depth-map 

reconstruction and derived a linear numerical scheme for it. We used the linear 

interpolation method for the disparity driven approach. Numerical schemes for the first 

order Taylor expansion method and the depth driven approach could by achieved 

analogously, if we apply the concept (5.1.1) to the sections 4.5 and 4.6. 

The next chapter illustrates the performance and reliabilities of all the methods, 

described and offered in this thesis.  
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Chapter 6 

 

Experimental Results 

 
In this chapter we will present experimental results that illustrate the theory from 

the previous chapters. First, we will shortly discuss the error measures and the 

visualization techniques for the computed depth-map solution. Then, we will give a 

short description of the used test sequences and the actual program implementation. 

In Chapter 2 we presented methods for depth-map computation, namely 

variational methods. These methods are based on the minimization of an energy 

functional, composed of a data and a smoothness terms. In Chapter 3 we developed 

suitable constancy assumptions for the data term and smoothness assumptions for the 

smoothness term and invented methods to control the matching process on run. In 

Chapter 4 we discussed depth-driven and disparity driven approaches and proposed to 

use linear interpolation instead of the first order Taylor expansion within the Euler – 

Lagrange equation. Moreover, we described the coarse-to-fine levels technique and the 

warping technique, and explained how to achieve more reliable results without them. 

The second, the third and the fourth parts of this chapter lead to experimental results 

that illustrate the theory from the aforementioned chapters. The conclusion to the thesis 

is given in the fifth section of this chapter.  

 

6.1 Experimental setup 

 
Before presenting the actual experiments and results, let us briefly discuss how we 

are going to assess the errors, the way we are going to visualize the solutions and the 

test sequences we have used in our experiments. 
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6.1.1 Test data sets 

 

The main goal of this thesis is the computation of the depth-map for stereo images. 

As this is a relatively young research field, there are not that many suitable test data sets 

available. However, there are several data sets, that are well-known and there is a 

ground truth computed for them. In this section we give a brief introduction to the test 

data sets that we have chosen to use for our experiments.  

It this thesis we use the stereo data sets from Middlebury University [WMB07]. 

These data sets include a stereo image, represented as at the least 2 photos made from 

different positions at the same moment of time, a true solution disparity map and also 

the most of data sets are supplied with an occlusion pixels map. The resolution of these 

stereo images is approximately 450 x 375 pixels and the objects’ displacement in these 

pictures does not exceed 22 pixels, i.e. lies in range of [0; 22). The true solution disparity 

map represents the pixels’ displacement field scaled by a certain scale factor, therefore it 

is an 8-bit grayscale picture with pixel values lying in range of [0; 255]. The occlusion 

pixels map is a 2-bit black-and-white picture, where black pixels represent occluded 

regions in the depth-map, and white pixels represent position of reliable data in the 

corresponding ground truth map (figure 6.1). 

 

   
Figure 6.1: “Tsukuba” test data set: Left: The left frame of scene; Centre: Ground truth disparity map; 

Right: Occlusion pixels’ map. 
 

Among with the “Tsukuba” data set we use 6 more data sets, depicted in figure 6.2. 

We will present the experimental results in the same order which the thesis was 

written: we will start with comparing results achieved by the depth-driven and 

disparity-driven methods. For this purpose we take “Moebius” and “Doll” scenes. As 

we can see at figure 6.2, these scenes have numerous objects, and a major part of them 

are far situated near to the background. Evaluating the distances for such objects is the 

weak side of the depth-driven method and at the same time it is the strong side of the 

disparity-driven method. Therefore these two scenes are the best choice to illustrate the 

difference of the methods. 

After that we will proceed with comparing the method of the first order Taylor 

expansion and the method of linear interpolation. Here we will use the “Art” and 

“Flowerpots” scenes.  The “Art” scene includes different size objects in the middle 

range and thin brushes in the foreground. And the “Flowerpots” scene consists of 

massive objects at the foreground. It is very interesting to compare the reliability of the 

methods on thin and massive objects with big displacements.  
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Figure 6.2: Test data sets: Top Left: “Moebius” scene; Top Centre: “Doll” scene; Top Right: “Art” scene; 

Bottom Left: “Flowerpots” scene; Bottom Centre: “Teddy” scene; Bottom Right: “Cones” scene. 
 

At the end we come to the experiments with the multi – view model on “Tsuluba”, 

“Teddy” and “Cones” data sets. They include up to 5 pictures and the efficiency of 

other methods for the depth-map reconstruction for these scenes is available at 

[WMB07].  Talking about efficiency of a method, let us proceed to the next subsection. 

 

6.1.2 Error estimation 

 

As we are about to perform some experiments we need a way to measure how 

good or bad they are. As mentioned before, the depth-map is an array of scalar values. 

For every pixel we have a distance value from an observer to an object in scene.  For any 

depth value in a pixel we have one-to-one accordance with the disparity of that pixel 

between pictures of a stereo image. 

For our experiments we use data sets supplied with ground truth disparity maps. 

Having the ideal solution available, we can compare our results with it. Our solution is 

also a scalar array which represents either depth-map or disparity map, so we need a 

way to compare two disparity maps. Here we introduce the notion of the bad pixel. Let 

the solution disparity map will be denoted as ),( vuz  and the ground truth disparity 

map as ),( vud , then the bad pixel is the pixel for which the following inequality is not 

true: 

 

δ≤− ),(),( vuzvud ,     (6.1.1) 

 

where δ  is a small threshold.  

As the criteria of error estimation we take the percentage of the bad pixels in the 

solution image. During this estimation we do not consider the occluded pixels. 
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6.1.3 Results visualization 

 

We have already presented an error measurement technique for estimating our 

solution. Of course, this is the most precise way to measure the quality of the solution. 

Here follow some visualization techniques we can use.  

Since human eye can distinguish only 40 grayscales, and 2,000,000 colors we 

represent the scaled disparity and depth maps, which are in fact 8-bit grayscale images, 

colored with the help of an “ice-fire” palette. We will always add to the color-coded 

images the palette bar in order to let the reader estimate the disparity or depth in 

figures.  

For more clearness we will also visualize the distribution of bad pixels, which are 

calculated according to the formula (6.1.1). For this purpose we will draw them with the 

red color on a grayscale solution image. Black color will denote occluded regions, which 

are not used during the error estimation. 

 

6.1.4 Implementation details 

 

After we have presented the test sequences that we are going to use for our 

experiments, we should also present the current implementation used for computing 

the reported results. 

The test program has been written in two instances. The first instance is written in 

GNU C++ for Linux SuSE 10.0 and the second one in Microsoft C# for Microsoft 

Windows XP SP2. Both instances are based on routines that perform the depth-driven 

and disparity-driven methods with first order Taylor expansion and linear interpolation 

approaches. The program is also equipped with routines that solve a linear/non-linear 

system of equations, using the SOR method in case of linear system of equations. Also, 

the coarse-to-fine technique is applied with maximum 16 levels. In case of using the first 

order Taylor expansion, the coarse-to-fine technique is supplied also with the warping 

technique. 

All of the above mentioned routines were self-written and optimized for speed. The 

constants and parameters that were used by these routines will be presented in tables, 

since they are different for different methods. Except for the parameter Θ , which is 

always equal to the value 0,85. 

 Around the above mentioned functionality was build a new one based on theory 

from the paragraph 3.6, that allows to get rid of coarse-to-fine levels technique, warping 

technique, speed up the convergence of an algorithm, have on run error recovery and 

make the solver human– and outer parameters– independent as much as possible. 

The test program has a user-friendly interface, which allows the user to watch the 

automatic parameters optimization and the solution evolution during iterations. Also 

the interface allows manually to specify the parameters of the methods in the course of 

the program execution and to monitor the performance of the methods with respect to 

the error estimation. 
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6.2 Depth vs. disparity 

 
In this section we make experiments on the “Dolls” and “Moebius” scenes. Each 

stereo image consist of two bitmap pictures with resolution 463 x 370 pixels. In the 

experiment we used geometric levels pyramid with 8 coarse levels and the coarsest 

level resolution about 57 x 46 pixels. The displacement of objects in the scene varies 

between 6 and 21 pixels, so the maximal displacement on the coarsest level does not 

exceed 3 pixels. The scale factor here is equal to 12. We use a linear interpolation 

method in these experiments that easily handles 4 pixels displacements. 

 

6.2.1 Error estimation 

 

We start with the “Doll” scene. Here we use the parameters, shown in the table 6.1: 

 
Table 6.1: “Doll” scene: setup parameters. 

 
Depth-driven 

approach 

Disparity-driven 

approach 

ρ 1,5 1,5 

ϕ 1x104 3x102 

τ 1x10-4 – 

λd 0,1 0,3 

λs 1x10-3 2,5x10-3 

 

 As we can see, with the depth-driven method we ought to use a very small time 

step τ  in that time, while the linear numerical scheme (4.6.12) for the disparity-driven 

method does not require this time step at all. We shell discuss the speed of convergence 

of these methods in the next section of this paragraph. 

At the figure 6.3 we illustrate the results of the first experiment – difference 

between the depth-driven and the disparity-driven method. As we can see from the 

table 6.1 we tried to create almost the same conditions for the experiment. The solution 

disparity map look similar, especially the foreground objects on them (Figure 6.3 

middle right and bottom right pictures). But we can clearly see that the background of 

the solution image of the depth-driven approach is overblurred, while at the solution 

image of the disparity-driven method we can neatly distinguish the dolls’ heads. 

Now let us compare the middle left and the bottom left pictures of the figure 6.3. 

The distribution of the bad pixels again is very similar at the foreground – the red areas 

in the centre and bottom of the pictures somewhere larger, somewhere smaller, but look 

similar. And in the background, where the depth-driven method gives overblurred 

results – at the top of the middle left picture of the figure 6.3 we observe a large red area 

– the area where the depth-driven method failed to determine the correct depth. Total 

amount of bad pixels in the result image of the depth-driven method is near 5 times 

bigger than in the result image of the disparity-driven method. 
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Figure 6.3: Experiment I: “Doll” scene: Top Left: The middle frame of the scene; Top Right: Ground truth 

disparity map; Middle Left: Distribution of the bad pixels in the solution achieved by the depth-driven 

method ( 75,0=δ ); Middle Right: Depth-driven solution disparity map; Bottom Left: Distribution of the 

bad pixels in the solution achieved by the disparity-driven method ( 75,0=δ ); Bottom Right: Disparity-

driven solution disparity map. 

 

At the figure 6.3 we have presented the distribution maps of the bad pixels in the 

solution images achieved by the investigated methods for the threshold value 75,0=δ . 

The percentage of bad pixels for different δ  is presented in the table 6.2. 
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Table 6.2: “Doll” scene: percentage of bad pixels for differentδ . 

δ 
Depth-driven 

approach 

Disparity-driven 

approach 

0,5 24,58 % 6,61 % 

0,75 18,67 % 3,91 % 

1 13,29 % 2,37 % 

1,5 7,51 % 1,23 % 

2 3,46 % 0,7 % 

 

At the table 6.2 we can see that the percentage of bad pixels tends to zero, but 

everywhere the mistake of the depth-driven method approximately 5 times larger than 

the mistake of the disparity-driven method.  

For the second experiment, we took the “Moebius” scene with almost the same 

parameters like before, which are shown in the table 6.3: 
 

Table 6.3: “Moebius” scene: setup parameters. 

 
Depth-driven 

approach 

Disparity-driven 

approach 

ρ 2 1,5 

ϕ 1x104 3x102 

τ 1x10-4 – 

λd 0,1 0,3 

λs 1x10-3 2,5x10-3 

 

At the figure 6.4 we illustrate the results of the second experiment – difference 

between the depth-driven and the disparity-driven methods on the “Moebius” scene. 

As it was expected, the results give us the same picture: for the near and reasonably far 

objects, the methods give very similar results, but for the far distant objects, the depth-

driven does not able to estimate the distance to the objects. This phenomenon was 

described in section 4.1. 

At the figure 6.4 we have presented the distribution maps of the bad pixels in the 

solution images achieved by the investigated methods for the threshold value 75,0=δ . 

The percentage of bad pixels for different δ  is presented in the table 6.4. 

 
Table 6.4: “Moebius” scene: percentage of bad pixels for differentδ . 

δ 
Depth-driven 

approach 

Disparity-driven 

approach 

0,5 23,11 % 13 % 

0,75 19,64 % 9,6 % 

1 17,43 % 7,55 % 

1,5 7,98 % 4,54 % 

2 2,66 % 1,37 % 
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Figure 6.4: Experiment II: “Moebius” scene: Top Left: The middle frame of the scene; Top Right: Ground 

truth disparity map; Middle Left: Distribution of the bad pixels in the solution achieved by the depth-

driven method ( 75,0=δ ); Middle Right: Depth-driven solution disparity map; Bottom Left: Distribution 

of the bad pixels in the solution achieved by the disparity-driven method ( 75,0=δ ); Bottom Right: 

Disparity-driven solution disparity map. 

 

Now let us proceed with the discussion how fast these methods are.  In order to do 

that, we will compare the number of iterations and how much time one iteration require 

for both methods in the following section. 
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6.2.2 Estimation of the convergence speed  

 

To estimate the speed of convergence of the algorithms for the depth-driven and 

disparity-driven method we plot the graphs which illustrate the percentage of bad 

pixels depend on the iteration number. Here we took the finest level with the same 

initial data and 6 thousand iterations.  

 

  
Figure 6.5: Experiment III: Convergence speed: red graph – the depth-driven method; blue graph – 

disparity-driven method: Left: “Dolls” scene for 75,0=δ ; Right: “Moebius” scene for 75,0=δ . 

 

At the figure 6.5 we can see that for the disparity-driven method less than 50 

iterations are to reach the limit which the depth-driven method reaches in 6000 

iterations. In general the blue graph is more tended to the ordinate axis, while the red 

one is more smooth and steady. It shows that the speed of convergence of the linear 

disparity-driven problem is faster than the speed of convergence of the non-linear 

depth-driven problem. Moreover, the straight-forward implementation of the algorithm 

shows that the one iteration of the non-linear system of equations takes more time that 

one iteration of the linear system of equations. 

 

6.3 First order Taylor expansion vs. linear 

interpolation  
 

In this section we make experiments on the “Art” and “Flowerpots” scenes. Each 

stereo image consists of two bitmap pictures. The stereo image of “Art” scene has 

resolution 463 x 370 pixels and the stereo image if “Flowerpots” scene has resolution 

437 x 370 pixels. In the experiment we used arithmetic levels pyramid with 16 coarse 

levels and the coarsest level resolution about 29 x 23 pixels. The displacement of objects 

in the scene varies between 7 and 21 pixels, so the maximal displacement on the 

coarsest level does not exceed 1,5 pixels. The scale factor here is equal to 12. We ought 

to use so much coarse levels and so small resolution of the coarsest level, because as we 

have described in section 4.2 the method of first order Taylor expansion is not able to 

process big displacements and, moreover, should involve the warping technique.  
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6.3.1 Error estimation 

 

We start with the “Art” scene. Here we use the parameters, shown in the table 6.5: 

 
Table 6.5: “Art” scene: setup parameters. 

 
First order Taylor 

expansion 

Linear 

interpolation 

ρ 1,5 1 

ϕ 5x102 3x102 

CL6 16 8 

λd 0,3 0,3 

λs 2,5x10-3 2,5x10-3 

 

Since the methods in some extend are very similar – the method of linear 

interpolation is the general case of the method of first order Taylor expansion, as it was 

proven in section 4.3, we can use almost the same setup parameters for both methods, 

except the number of coarse levels. The method of linear interpolation in contrast to the 

first order Taylor expansion can handle few times bigger displacements and without 

warping, so here we use the two times smaller number of the coarse levels. 

At the figure 6.6 we can se that both methods gives almost the same results, except 

that, the method of first order Taylor expansion gives more artefacts at the near situated 

objects and more outliers overall the solution. This is resulting from the inaccuracy of 

the warping technique and impossibility of the first order expansion method to handle 

large displacements at the finest level. 

At the figure 6.6 we have presented the distribution maps of the bad pixels in the 

solution images achieved by the investigated methods for the threshold value 1=δ . The 

percentage of the bad pixel for different δ  is presented in the table 6.6: 

 
Table 6.6: “Art” scene: percentage of bad pixels for differentδ . 

δ 
First order Taylor 

expansion 

Linear 

interpolation  

0,5 19,88 % 18,66 % 

0,75 16,05 % 13,98 % 

1 14,09 % 11,58 % 

1,5 11,55 % 9,44 % 

2 10,01 % 7,96 % 

 

The errors are very similar and do not differ from each other more than 1 % – 2 % 

percents. But truly speaking all the values in the table 6.6 are smaller for the linear 

interpolation method than the corresponding values for first order Taylor expansion. 

We can conclude that on the “Art” scene the linear interpolation method gave better 

results, and appeared to be faster, since it requires less number of coarse levels. 

                                                 
6 Abbreviation from “coarse levels” (CL), i.e. number of coarse levels. 
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Figure 6.6: Experiment IV: “Art” scene: Top Left: The middle frame of the scene; Top Right: Ground 

truth disparity map; Middle Left: Distribution of the bad pixels in the solution achieved by the first order 

Taylor expansion ( 1=δ ); Middle Right: First order Taylor expansion solution disparity map; Bottom 

Left: Distribution of the bad pixels in the solution achieved by the linear interpolation method ( 1=δ ); 

Bottom Right: Linear interpolation solution disparity map. 

 

Now let us do the similar experiment on another scene –´”Flowerpots”. The setup 

parameters are shown in table 6.7 and the results of the experiment are illustrated at the 

figure 6.7. 
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Figure 6.7: Experiment V: “Flowerpots” scene: Top Left: The middle frame of the scene; Top Right: 

Ground truth disparity map; Middle Left: Distribution of the bad pixels in the solution achieved by the 

first order Taylor expansion ( 1=δ ); Middle Right: First order Taylor expansion solution disparity map; 

Bottom Left: Distribution of the bad pixels in the solution achieved by the linear interpolation method 

( 1=δ ); Bottom Right: Linear interpolation solution disparity map. 

 

As it was ought to be expected the results are very similar, expect some small 

artifacts, which are appears on the object’s borders and the nearest points of the objects. 

Also we can see that the number of features on both solution pictures is the same. 
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Table 6.7: “Flowerpots” scene: setup parameters. 

 
First order Taylor 

expansion 

Linear 

interpolation 

ρ 1,25 0,8 

ϕ 2x102 1x102 

CL 16 8 

λd 0,3 0,3 

λs 2,5x10-3 2,5x10-3 

 

Comparing the percentage of bad pixels in the solution maps gained by the 

methods of interest, we conclude that the method of linear interpolation gives again 

better results on the scenes with massive objects than the method of the first order 

Taylor expansion (see table 6.8). 

 
Table 6.8: “Flowerpots” scene: percentage of bad pixels for differentδ . 

δ 
First order Taylor 

expansion 

Linear 

interpolation  

0,5 15,48 % 10,55 % 

0,75 8,82 % 5,13 % 

1 5,13 % 2,47 % 

1,5 2,21 % 1,79 % 

2 1,79 % 1,33 % 

 

6.3.2 Getting rid of the coarse levels 

 

At the conclusion to the paragraph 6.3, we can write that the method of linear 

interpolation is more accurate then the method of first order Taylor expansion, it does 

not require the warping technique directly and a big number of the coarse levels, what 

makes it more fast and reliable. In addition we may say that if we combine the linear 

interpolation method with the method of automatic control of process parameters, we 

can get rid of the coarse levels and make all the calculations on the fine level. The 

experiments, described in this section show reliability of such approach, and that the 

variation process still capable to avoid getting stuck in a local minima. 

  The evolution of parameters we can observe in the table 6.9. In the first column we 

see the setup parameters that are defined by a user, and in the next columns follow the 

parameters which choose the solver during the iteration process. 
 

Table 6.9: “Art” scene: setup parameters evolution. 

           It x 103 

parameter 
0 - 2 2 – 3 3 – 3,5 3,5 – 3,8 3,8 – 4 

ρ 3 1,5 0 0 0 

ϕ 1000 100 10 500 300 

λd Tichonov Tichonov Tichonov 0,5 0,3 

λs Tichonov Tichonov Tichonov 0,03 0,0025 



Chapter 6.   Experimental Results 

 

 

96 

Now let us observe the figure 6.8, which shows how it works. The initial depth 

displacement for the solution was set to 12 pixels and the total amount of iterations to 4 

thousand. At the table 6.9 we see that during the first 2 thousand iterations the solver 

uses the Tichonov regularization, which does not require an additional lambda 

parameter. Moreover, during the first 2 thousand iterations the solver uses a very big 

smoothness parameter ϕ  and a large image presmoothing parameter ρ . At these steps, 

the solver creates a very smooth disparity map – the fundament for all the subsequent 

calculations. Exactly this guaranties us that we will not get stuck in poor local minima.  

 

   
 

   
 

    
 

   
 

 
Figure 6.8: Experiment VI: Evolution of “Art” scene: Top Row: The disparity map before calculations, 

after the 2000 iterations and after 3000 iterations; Second Row: Corresponding to the top row distribution 

maps of bad pixels ( 1=δ ); Third Row: The disparity map after 3,5, 3,8, 4 thousand of iterations; Bottom 

Row: Corresponding to the third row distribution maps of bad pixels ( 1=δ ). 
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At the next one thousand iterations, the solver reduces both smoothness parameters 

ϕ  and ρ , and creates more precise and less overblurred solution. The disparity map 

after this step looks like the usual initial data map for the finest level in case if we used 

the coarse levels technique. At the next step, the solver even more reduces the 

smoothness parameters. This time the small details appear, like brushes and small holes 

in the rings. Also at this time some undesirable noise appears (see figure 6.8, the first 

picture of the third row). 

Starting from the 3500-th iteration the solver starts using Charbonnier penalization 

in data and smoothness terms, it rises again the smoothness parameter ϕ . That 

eliminates the noise from the previous step and due to the nonlinear regularization 

preserves small important details. At the last 2 hundred iterations of variational 

process, the solver reduces all the parameters to press out at the end as much details as 

possible – the smaller dλ  leads to penalizing the data term’s influence in energy 

functional and therefore to the disparity map overblurring. That’s why the parameter ϕ  

is also reduced. The smaller sλ  makes the borders of objects sharper (see figure 6.8). 

 

  
 

  
 

 
Figure 6.9: Experiment VI: “Art” scene: Top Left: Distribution of the bad pixels in the solution achieved 

by the linear interpolation method with using the coarse levels ( 1=δ ); Top Right: Linear interpolation 

solution disparity map with using the coarse levels; Bottom Left: Distribution of the bad pixels in the 

solution achieved by the linear interpolation method without using the coarse levels ( 1=δ ); Bottom 

Right: Linear interpolation solution disparity map without using the coarse levels. 



Chapter 6.   Experimental Results 

 

 

98 

At the figure 6.9 we compare the results achieved by the method of linear 

interpolation with and without using the coarse levels technique. As we can see the 

results are very similar except the small details. The method of automatic setup variable 

calibration during the calculations not only makes the variational process faster, but 

makes it also more sensitive to the small details and handles them wisely and precise. 

In the table 6.10 we compare the results of the linear interpolation method with 

coarse levels (and without automatic adjustment technique) and without coarse levels 

(and with automatic adjustment technique): 
 

Table 6.10: “Art” scene: percentage of bad pixels for differentδ . 

δ 
Linear 

interpolation 8 CL 

Linear 

interpolation 1 CL 

0,5 18,66 % 13,67 % 

0,75 13,98 % 10,66 % 

1 11,58 % 9,44 % 

1,5 9,44 % 7,26 % 

2 7,96 % 5,41 % 
 

We may conclude, that the method of linear interpolation in combination with the 

method of controlling the matching process and automatic setup parameters correction 

is faster than existing methods (we do not talk about the real-time methods, which use 

the multigrid techniques, which, besides, are possible also to apply to our method) may 

handle the problem of depth-map reconstruction without coarse levels, without 

warping technique and may give better results in means of percentage of bad pixels 

estimation. We finish this section with the table 6.11, where the capacities of the 

methods are compared: 
 

Table 6.11: Method capacities versus the number of coarse levels. 

CL 
First order Taylor 

expansion 

Linear 

interpolation  

16 + warping + 

8 – + 

1 – + controlling 

 

6.4 Two cameras vs. multiple cameras 

 
In this section we make experiments with the “Cones”, “Teddy” and famous 

“Tsukuba” scenes. This time, each stereo image consists of five bitmap pictures. The 

stereo images of the “Cones” and “Teddy” scenes have resolution 450 x 375 pixels and 

the stereo image of “Tsukuba” scene has resolution 384 x 288 pixels. In the experiments 

of this section we used no coarse levels due to the method of linear interpolation and 

interactive parameters adjustment. The displacement of objects in the scenes varies 

between 4 and 16 pixels. The scale factor here is equal to 16. 
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Figure 6.10: Experiment VII: “Cones” scene: Top Left: The middle frame of the scene; Top Right: Ground 

truth disparity map; Left Column: Distribution of the bad pixels in the solution achieved by the 2, 3 and 5 

cameras from top till bottom ( 75,0=δ ); Right Column: 2, 3 and 5 cameras solution disparity map from 

top till bottom. 
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At the figure 6.10 we can observe the “cones” scene and the results gained by using 

two, three and five cameras. As we can see they are very similar. Even the distributions 

of bad pixels for these solutions are almost indistinguishable by a human eye. So let us 

consider the table 6.12, where the precise percentages of bad pixels are brought: 

 
Table 6.12: “Cones” scene, percentage of bad pixels for differentδ . 

δ 2 Cameras 3 Cameras 5 Cameras 

0,5 4,44 % 3,76 % 5,09 % 

0,75 3,18 % 2,79 % 3,46 % 

1 2,32 % 2,04 % 2,52 % 

1,5 1,46 % 1,36 % 1,65 % 

2 1,04 % 1,01 % 1,15 % 

 

Here we can conclude that the result disparity map, achieved by using information 

from the 3 cameras appears to be the best and the result disparity map, achieved by 

using information from the 5 cameras appears to be the worst. Anyway, the difference 

of percentage of bad pixels does not vary significantly and the method based on the 3 

cameras does not win a lot from the method based on 2 cameras. At the other hand we 

conclude, that the additional information from additional cameras does not always help 

to achieve better results.  

Now let us proceed to the next scene. If we look at the table 6.13 we can realise that 

the results for the “Teddy” scene is more interesting – here we can not say which of the 

solution disparity map is definitely better or worse:  

 
Table 6.13: “Teddy” scene, percentage of bad pixels for differentδ . 

δ 2 Cameras 3 Cameras 5 Cameras 

0,5 5,66 % 7,66 % 3,75 % 

0,75 2,75 % 3,15 % 2,58 % 

1 2,01 % 2,19 % 2 % 

1,5 0,95 % 0,89 % 1,07 % 

2 0,51 % 0,49 % 0,61 % 

 

We see that the variational method that uses information from five cameras is more 

robust to the small details, since for the small threshold δ  it gives the best results. But 

at the same time it gives the worse results for the large δ . It can be considered as an 

evidence of that the method, based on five cameras, does not precede the whole objects 

geometry precisely. Here the best result gives the method that uses information from 

three cameras. In this section we use only consequent frames of the stereo images, so 

our error estimation may be incomparable with the error measurement from the 

[WMB07]. Please refer to the appendix A  

At the figure 6.11 the results for the threshold 5.0=δ  are depicted. As we can see, 

the 5 cameras result is more blurry, that’s why the regions inside objects are calculated 

more properly than in other methods – the information from tree or two cameras is not 

enough to fill these areas (see the distributions maps of the bad pixels at the next page):  
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Figure 6.11: Experiment VIII: “Teddy” scene: Top Left: The middle frame of the scene; Top Right: 

Ground truth disparity map; Left Column: Distribution of the bad pixels in the solution achieved by the 

2, 3 and 5 cameras from top till bottom ( 5,0=δ ); Right Column: 2, 3 and 5 cameras solution disparity 

map from top till bottom. 
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Now let us discuss famous Tsukuba scene. First of all watch the figure 6.12, where 

the results for three and five cameras are compared. We do not consider now the case of 

two cameras, since we know already the capability of the method and in this section we 

focus the attention on the multi – view depth-map reconstruction and further 

comparison with the results of other methods: 

 

  
 

  
 

  
 

 
Figure 6.12: Experiment IX: “Tsukuba” scene: Top Left: The middle frame of the scene; Top Right: 

Ground truth disparity map; Left Column: Distribution of the bad pixels in the solution achieved by the 3 

and 5 cameras from top till bottom ( 1=δ ); Right Column: 3 and 5 cameras solution disparity map from 

top till bottom. 
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At the figure 6.12 we see that the results for the three and five cameras 

reconstruction could be predicted by the previous conclusions of the experiments with 

the “Cones” and “Teddy” scenes. Looking at the distributions of bad pixels, we can 

notice that the distribution map for the five cameras case is richer with the red color. 

But considering these maps more closely, we see that the distribution map of bad pixels 

in the solution, achieved by the five cameras method has no red pixel at the background 

as well as it has much more less “stand alone” red pixels. We just conclude again, that 

the method based on five cameras is more accurate with the small details but still has 

problems with the whole objects’ geometry: if we look at the solution disparity maps 

we see that the objects at the 5 cameras solution disparity map appear to be “wider” 

and more blurry than the objects at the 3 cameras solution disparity map. 

We would like to compare our results with the results, achieved by other existing 

methods. The computer vision department’s web site of the Middlebury University 

[WMB07] provides us with the possibility to familiarize with the capabilities of more 

than 30 depth-map reconstruction methods and to compare theirs solution disparity 

maps for the “Tsukuba” scene with our own solution. Since the disparity map, 

calculated with the help of the variational method in case of 3 cameras gives us better 

results than in case of 5 cameras (see table 6.14), we compare it with the most interesting 

three other results, calculated with help of alternative methods: the infection method 

[OFPL06], the method of dynamic programming, similar to Bobick and Intille [SS02] 

and the graph cuts method [KZ01]. These depth maps and theirs distributions of bad 

pixels are illustrated at the figure 6.13. 

 
Table 6.14: “Tsukuba” scene, percentage of bad pixels for differentδ . 

δ VM7 3Cam VM 5Cam Infection Dyn. Prog. Graph Cuts 

0,5 18,4 % 13,6 % 22,1 % 19,6 % 6,19 % 

0,75 8,17 % 9,86 % 21,9 % 19,6 % 6,10 % 

1 6,19 % 8,17 % 7,95 % 4,12 % 1,19 % 

1,5 4,62 % 6,53 % 7,36 % 4,12 % 1,19 % 

2 3,9 % 5,6 % 6,34 % 3,43 % 0,88 % 

 

In the table 6.14 we observe the percentage of bad pixels for our method and 

alternative methods. We must confess that nowadays the graph cuts method allows 

gaining the best results on “Tsukuba” scene. Nevertheless, as we can see from the table 

6.14, the variational method, being a new and young approach for depth-map 

reconstruction, is not only competitive with other methods, but even takes the high 

stand among them.  

At the figure 6.13 we compare the resulting disparity maps of variational method 

with alternative ones. The distributions of bad pixels for the 1=δ  are also illustrated. 

As we can see, the graph cuts method produces the best disparity map, and other 

methods introduce some distortions. The result of the variational method looks pretty 

good among other ones and we hope that further development will only improve it and 

spread it widely. 

                                                 
7 Abbreviation from “variational method” (VM). 
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Figure 6.13: Comparison of computer vision methods on “Tsukuba” scene ( 1=δ ): Top Row: Our 

method; Second Row: Infection method; Third Row: Method of dynamic programming; Bottom 

Row: Graph cuts method. 



6.5 Conclusion 

 

 

105 

6.5 Conclusion 
 

The variational methods are the most successful methods used for optic flow 

computation. One of the contributions of this work is the investigation of application of 

the famous variational methods of Horn-Schunck and Brox et al., to the problem of 

depth-map reconstruction. We combine multiple constancy assumptions in the data 

term and use different penalizing functions in the smoothness term. These penalizing 

functions are bound with the diffusion process that is well known from physics. We 

have discussed two approaches for the depth-map reconstruction: the depth-driven and 

the disparity-driven; and investigated the behavior of the data term and the smoothness 

term in the energy functionals constructed in accordance to these approaches. For this 

purpose we have presented a powerful tool for analyzing the smoothness process 

during the reconstruction – the RnB pyramid. Theoretical issues and experiments 

showed the advantages of the disparity-driven method. 

The main goal of all the research done in this thesis is to find a suitable variational 

method for computing a correct depth-map for real-world data. During this research a 

few fundamental improvements were discovered and offered. First of all, we have 

offered to replace the popular nowadays method of the first order Taylor expansion, 

which is used to get rid of implicitness in the data term and linearize it, with the more 

general method of the linear interpolation. This improvement, almost without any 

additional computational effort, allowed us to handle large object’s displacements in 

pictures of a stereo image and to get rid of nasty warping technique, when using coarse 

levels. The problem of the depth-map reconstruction with variational methods – as the 

major part of the computer vision problems – leads to the iterative numerical problem, 

or by other words, the process of calculation the depth-map in our case is the iteration 

process. The second improvement, that we offered, is the automatic trace of the 

convergence of the iteration process on run and even the control of it with the help of 

invented technique. Such an improvement not only uncover the possibility to speed up 

the process and release it from errors, but in combination with the method of linear 

interpolation, mentioned right above, allows to get rid of coarse levels at all. In the 

experimental sections of this thesis we have shown that these innovations work for real-

world data and give much better results than current techniques and methods. 

Moreover, we have to mention, that the described improvements could be applied to 

the original optic flow methods. 

Another goal of this thesis is to define how the number of cameras and their 

position / orientation influences the resulting depth-map. In order to successfully 

accomplish this task, the general theory of multi – view depth-map reconstruction in 

the meaning of the two frame model extension was constructed, applied and evaluated. 

We made a numerous experiments and compared our results with the alternative 

methods for the depth-map reconstruction. 

We hope that with our work we have managed to connect the worlds of computer 

vision with the world of variational methods. We further hope that our efforts have 

contributed to the improvement of the highly accurate depth-map computation 

techniques and the variational methods. 
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Appendix A 

 
In the section 6.4 we compared the variational method with the alternative methods 

for the depth-map reconstruction. Here we estimate gained results with the other 

computer vision methods. We used the experiment setup strategy and the error 

estimator, provides by the Middlebury University. Hereby we put here the table of the 

percentages of bad pixels, generated at the Middlebury University webpage.  

The table includes the error estimations for 4 scenes: “Tsukuba”, “Venus”, “Teddy” 

and “Cones”. The first column contains the short name of a method, the second column 

– the average rank of the method. Black numbers denote the percentage of bad pixels, 

blue numbers – the rank of the method within the current column. The table uses the 

following abbreviations: 

• nonocc – non occluded pixels only – during the estimation occluded pixels 

were not considered; 

• all – all the pixels – during the estimation all the pixels were considered; 

• disc – discontinuities – during the estimation only pixels from the areas were the 

discontinuity arises were considered.  

 

During the experiment the following results were used: 

• “Tsukuba” scene – 3 cameras result, linear interpolation and the matching process 

controlling techniques were used. No coarse levels, no warping. Scale factor is 

equal to 16. 

• “Venus” scene – 3 cameras result, linear interpolation and the matching process 

controlling techniques were used. No coarse levels, no warping. Scale factor is 

equal to 8. 

• “Teddy” scene – 5 cameras result, linear interpolation and the matching process 

controlling techniques were used. No coarse levels, no warping. Scale factor is 

equal to 4. (In the table 6.13 the scale factor while estimation is equal to 16). 

• “Cones” scene – 3 cameras result, linear interpolation and the matching process 

controlling techniques were used. No coarse levels, no warping. Scale factor is 

equal to 4. (In the table 6.12 the scale factor while estimation is equal to 16). 

 

For more details, please refer to [WMB07]. 
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δ = 1 

Algorithm Avg Tsukuba Venus Teddy Cones 

 Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc 

AdaptingBP  2.4 1.11 5  1.37 2  5.79 6  0.10 1  0.21 2  1.44 1  4.22 3  7.06 2  11.8 3  2.48 1  7.92 2  7.32 1  

DoubleBP  3.8 0.88 1  1.29 1  4.76 1  0.14 4  0.60 10 2.00 6  3.55 2  8.71 5  9.70 1  2.90 3  9.24 9  7.80 2  

SubPixDoubleBP  4.6 1.24 8  1.76 10 5.98 7  0.12 2  0.46 4  1.74 4  3.45 1  8.38 4  10.0 2  2.93 4  8.73 6  7.91 3  

AdaptOvrSegBP  8.6 1.69 18 2.04 17 5.64 5  0.14 3  0.20 1  1.47 2  7.04 13 11.1 7  16.4 11 3.60 9  8.96 8  8.84 9  

PlaneFitBP  8.9 0.97 4  1.83 11 5.26 4  0.17 6  0.51 5  1.71 3  6.65 9  12.1 11 14.7 6  4.17 16 10.7 17 10.6 15 

SymBP+occ  9.3 0.97 3  1.75 9  5.09 3  0.16 5  0.33 3  2.19 7  6.47 8  10.7 6  17.0 14 4.79 20 10.7 18 10.9 16 

Segm+visib  9.8 1.30 12 1.57 3  6.92 15 0.79 17 1.06 15 6.76 18 5.00 4  6.54 1  12.3 4  3.72 10 8.62 5  10.2 13 

C-SemiGlob  10.3 2.61 25 3.29 20 9.89 22 0.25 9  0.57 7  3.24 12 5.14 5  11.8 8  13.0 5  2.77 2  8.35 4  8.20 4  

SO+borders  10.4 1.29 11 1.71 6  6.83 12 0.25 10 0.53 6  2.26 8  7.02 12 12.2 12 16.3 9  3.90 12 9.85 13 10.2 14 

DistinctSM  11.8 1.21 7  1.75 8  6.39 9  0.35 11 0.69 13 2.63 11 7.45 17 13.0 15 18.1 17 3.91 13 9.91 15 8.32 6  

OverSegmBP  12.0 1.69 19 1.97 14 8.47 19 0.50 14 0.68 12 4.69 15 6.74 10 11.9 10 15.8 7  3.19 7  8.81 7  8.89 10 

SegmentSupport  12.3 1.25 9  1.62 4  6.68 11 0.25 8  0.64 11 2.59 10 8.43 21 14.2 19 18.2 18 3.77 11 9.87 14 9.77 12 

RegionTreeDP  13.0 1.39 15 1.64 5  6.85 13 0.22 7  0.57 7  1.93 5  7.42 16 11.9 9  16.8 13 6.31 24 11.9 23 11.8 19 

EnhancedBP  13.8 0.94 2  1.74 7  5.05 2  0.35 12 0.86 14 4.34 14 8.11 19 13.3 17 18.5 20 5.09 22 11.1 19 11.0 17 

AdaptWeight  14.7 1.38 14 1.85 12 6.90 14 0.71 15 1.19 16 6.13 16 7.88 18 13.3 18 18.6 22 3.97 15 9.79 11 8.26 5  

SegTreeDP  14.9 2.21 23 2.76 18 10.3 24 0.46 13 0.60 9  2.44 9  9.58 24 15.2 23 18.4 19 3.23 8  7.86 1  8.83 8  

ImproveSubPix  15.4 3.00 26 3.61 23 10.9 26 0.88 18 1.47 17 7.10 20 7.12 14 12.4 14 16.6 12 2.96 5  8.22 3  8.55 7  

SemiGlob  16.4 3.26 27 3.96 24 12.8 29 1.00 19 1.57 18 11.3 24 6.02 6  12.2 13 16.3 10 3.06 6  9.75 10 8.90 11 

RealtimeBP  19.3 1.49 16 3.40 22 7.87 17 0.77 16 1.90 21 9.00 23 8.72 23 13.2 16 17.2 15 4.61 18 11.6 21 12.4 23 

GC+occ   20.3 1.19 6  2.01 16 6.24 8  1.64 24 2.19 23 6.75 17 11.2 27 17.4 27 19.8 25 5.36 23 12.4 24 13.0 24 

Layered  20.6 1.57 17 1.87 13 8.28 18 1.34 21 1.85 19 6.85 19 8.64 22 14.3 20 18.5 21 6.59 26 14.7 26 14.4 25 

MultiCamGC  21.0 1.27 10 1.99 15 6.48 10 2.79 30 3.13 27 3.60 13 12.0 28 17.6 28 22.0 27 4.89 21 11.8 22 12.1 21 

GenModel   23.3 2.57 24 4.74 27 13.0 30 1.72 25 3.08 26 16.9 28 6.86 11 15.0 22 19.2 23 4.64 19 14.9 27 11.4 18 

RealTimeGPU  23.7 2.05 22 4.22 26 10.6 25 1.92 27 2.98 25 20.3 30 7.23 15 14.4 21 17.6 16 6.41 25 13.7 25 16.5 27 

OUR METHOD 23.8 6.19 35 8.23 35 28.6 36 2.70 29 3.52 30 30.7 35 6.04 7  8.17 3  15.8 8  7.46 27 9.82 12 18.2 28 

CostRelax  24.3 4.76 31 6.08 30 20.3 33 1.41 23 2.48 24 18.5 29 8.18 20 15.9 24 23.8 28 3.91 14 10.2 16 11.8 20 

ReliabilityDP  25.5 1.36 13 3.39 21 7.25 16 2.35 28 3.48 29 12.2 27 9.82 26 16.9 25 19.5 24 12.9 34 19.9 33 19.7 30 

TreeDP  26.2 1.99 21 2.84 19 9.96 23 1.41 22 2.10 22 7.74 21 15.9 32 23.9 32 27.1 33 10.0 30 18.3 30 18.9 29 

GC  26.8 1.94 20 4.12 25 9.39 21 1.79 26 3.44 28 8.75 22 16.5 33 25.0 34 24.9 30 7.70 28 18.2 29 15.3 26 

DP   30.6 4.12 29 5.04 29 12.0 27 10.1 37 11.0 37 21.0 31 14.0 29 21.6 29 20.6 26 10.5 31 19.1 31 21.1 31 

PhaseBased  31.8 4.26 30 6.53 31 15.4 31 6.71 33 8.16 33 26.4 34 14.5 30 23.1 30 25.5 31 10.8 33 20.5 34 21.2 32 

SSD+MF  32.3 5.23 34 7.07 32 24.1 34 3.74 31 5.16 31 11.9 26 16.5 34 24.8 33 32.9 35 10.6 32 19.8 32 26.3 34 

STICA  33.7 7.70 36 9.63 37 27.8 35 8.19 34 9.58 34 40.3 37 15.8 31 23.2 31 37.7 36 9.80 29 17.8 28 28.7 36 

SO  34.0 5.08 33 7.22 34 12.2 28 9.44 36 10.9 36 21.9 32 19.9 36 28.2 37 26.3 32 13.0 35 22.8 36 22.3 33 

PhaseDiff   34.7 4.89 32 7.11 33 16.3 32 8.34 35 9.76 35 26.0 33 20.0 37 28.0 36 29.0 34 19.8 37 28.5 37 27.5 35 

Infection   35.4 7.95 37 9.54 36 28.9 37 4.41 32 5.53 32 31.7 36 17.7 35 25.1 35 44.4 37 14.3 36 21.3 35 38.0 37 
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