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Abstract

This paper describes a variational approach to dense stereo reconstruction, which
combines powerful tools such as regularization and multi-scale processing to estimate
directly depth from a number of stereo images, while preserving depth discontinuities.
Variational methods currently belong to the most accurate techniques for the
computation of the displacement field between the frames of stereo images. In the past
few years this problem has raised a great deal of interest due to the increasing number
of applications, both in vision and in graphics, where this problem has become of
crucial importance. Accuracy and time performance improvements of these methods
are achieved every year. Most of the efforts are directed towards finding better data and
smoothness terms for the energy functional. In this paper different data terms as soon
as different smoothness terms are considered. During the work on variational approach
two methods have been developed: the depth-driven method, where depth is computed
directly from the grey-level images; and the disparity—driven method, where depth is
computed from calculated disparity map. Also in this paper a number of novel
principles and techniques are offered which allow looking at the application of
variational methods in computer vision from a new point of view. All the methods can
also deal with any number (greater than one) of cameras. Moreover, to solve the
problem numerically, a row of PDE-based schemes have been applied. Experimental
results illustrate the capabilities and shortcomings of these methods.






Acknowledgements

First of all, I would like to gratefully acknowledge my supervisor Prof. Joachim
Weickert, who introduced me to the fascinating world of Image Analysis and Computer
Vision and who, through his passion for the subject, convinced me go into this field.

I am indebted to Prof. Michael Kroning for giving me an opportunity to start with
my graduation. I have never seen a teacher with such a thoughtful vision, lively ideas
and humanity.

I owe my highest gratitude to Dr. Andrés Bruhn for giving me the chance to work
in the Mathematical Image Analysis Group at the Saarland University and for his help
and supervision during the development of this thesis.

I thank all of my friends for their support, and the wonderful time we had spent
together.

And last but not least, I thank my parents for their ultimate support during all of
these years.

Sergey Kosov.

111






Contents

Chapter 1: INtroduction........ecvincnincsinninenniinniinniinniesieneenesesnesenes 1
1.1  Problem description ........ccccoeiiiiniiiiiniiiiiiiiciccce 1
1.2 Whatis adepth-map? ... 2
1.3 Fields of application .........ccoceeueieirieniiininiiiciiinccicccceee, 3
1.4  Definitions and Notations ..........cccccceeviviiiniiniininnie, 4
1.5  Outline of the thesis........cccccceviiniiiniiiiiiiice, 6

Chapter 2: Variational Optic Flow Methods. ..........couereenricrnincnnncnnns 9
2.1 General Structure ..........ccociviiiviiiniiiii 9

2.1.1  Presmoothing step ........cccccoviiiniiiiiiiiiiiiicce, 10
2.1.2 MInImIZation ... 11
2.2 Construction of the energy functional...........cccecceeeeirininininnnnee. 11
2.3 The Euler-Lagrange equation ............cccccceevviiiniiiinniiccninncnne, 14
AR SIS 114130 T o OO 18

Chapter 3: Matching Process ........ieniennienniennnesnnesnnisnsesnssesnesenes 21
3.1  COrreSPONdence...........cocceeruerieiiiiniiniiieineieeeeneeeee e 22
3.2 Grey-value constancy assumption.........ccceceeviviiinniiiininicnnnen, 26
3.3 Gradient constancy assumption........ccccceceeeeeererenieineneniecnnennen 28
3.4  DiffuSiOn PIOCESS ......ccovecieuiriirieiiiiiiinicieeneiet e 31
3.5 Preserving discontinuities..........cccceveivinniiiniiininiiiine, 35
3.6 Controlling the matching process..........cccccocevvviiiiniiiinininnne, 39
3.7 SUINIMATY ...ooriiiiiiiiiiiiiiiiitctcccc e 41



Chapter 4: Depth-Map Reconstruction with Two Cameras............... 43

4.1 Depth-driven method vs. disparity-driven method................. 43
4.2 First order Taylor expansion.........ccccvevvecieenenicciiinenncnieenenen. 50
4.3 Linear interpolation of data term ........c..cccceveviiiciiinincnninennee. 52
4.4 Penalization in the data term ..........cccoceeiiiiiiiniiniinince, 56
4.5 Time marching numerical scheme............cccceceviciiininininnnnnnee. 57
4.6  SOR numerical scheme ..........ccccccoviiiiiiniiniie, 62
4.7  Coarse-to-fine levels technique...........cccoeiiiiiiiinninninnn, 67
4.8 SUMIMATY ..cvoiiiiiiiiiciicce e 70
Chapter 5: Multi — View Depth-Map Reconstruction ...........ccecueeeee. 73
51 Multiple data terms .........ccccovuiiiiiiiininiiiii 73
5.2  Numerical scheme ..........cccccoviviiiiiiiiiiniie, 74
53  SUMMATIY ..o 80
Chapter 6: Experimental Results..........oeeverriennierunerencrnncrnnncsenncennenns 83
6.1 Experimental setup.......ccoovviiiiiiiiiiiiiiiin 83
6.1.1  Test data sets.......ccceeiviiviiniiiiiiiii, 84
6.1.2  Error estimation..........cccoovivininiiiiiiiiic, 85
6.1.3  Results visualization..........ccocccveviniiiniiniiniiniiicce, 86
6.14 Implementation details ..........cccccoovvriiiniiiniiiis 86

6.2  Depth vs. diSparity ......cccoeveeiiininieiiiriiciiecccce 87
6.2.1  Error estimation.........ccccocviviniiiniiiiiiiii, 87
6.2.2  Estimation of the convergence speed............cccccoevrururinnnnnnes 91

6.3  First order Taylor expansion vs. linear interpolation................. 91
6.3.1  Error estimation..........cccocvinininiiiiiiiciccce, 92
6.3.2  Getting rid of the coarse levels...........ccccocevininiiinniinnnnns 95

6.4 Two cameras vs. multiple cameras ..........cccccevevveciiinincniecncnnene. 98
6.5  ConcluSIiON ..ot 105
APPENAIX A ..cuviriiiriiriniiiininniiiiniinseieisssssssssssssssssssssssssasses 107
33100 FT0T=a 1 o] o | 2O 109

Vi









,,Even mathematics needs it, even the invention of integral and
differential calculus could be impossible without imagination.
Imagination is the quality of the highest value.”

— Vladimir Ilyich Lenin.

Chapter 1

Introduction

1.1 Problem description

One of the key classical and long-debated correspondence problems in Computer
Vision is the reconstruction of a detailed depth-map from a set of cameras. The cameras
give us an ordered set of pictures — a stereo image and we would like to be able to
correctly estimate the distance from an observer to the objects represented in such a
picture array. These distances values in the image points constitute the depth-map. In
order to compute the depth-map we need to compare certain features that stay
invariant in the picture set and that can help us to identify the objects and distances to
them in the scene. These features we call invariance or constancy assumptions.

So far, most of the research done in the field of application of variational methods
to computer vision problems has been directed to computation of the optic flow field
between the frames of an image sequences. In this thesis we apply that experience to the
problem of the depth-map reconstruction from a set of cameras.

The main goal of this thesis is to investigate the application of variational methods
to the problem of depth-map reconstruction; to formulate method’s strong points and
advantages over other map reconstruction methods as well as its shortcoming; to place
the method among existing map reconstruction methods. Another primary goal of the
thesis is to define how the number of cameras and their position / orientation influences
the resulting depth-map. But let us first formulate the reconstruction problem in a more
formal manner.
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1.2 What is a depth-map?

The term "depth-map" refers to a visual phenomenon that we experience every day.
Humans like all other mammals make use of the binocular vision — the vision in which
both eyes are used together. It gives four advantages: a spear eye if one is damaged, a
wider field of view, binocular summation and stereopsis’. The human vision system
gives a precise depth perception due to the stereopsis in which a parallax is provided
by the two eyes’ different position. A machine has the advantage to have more than two
eyes, and vary their position on body.

Having a stereo image (a picture set) we would like to estimate the distances to the
objects, represented at the image. For this purpose, we take two pictures of the set (left
and right, for example) and try to estimate the position to which every pixel from the
first picture has moved in the second picture. Having this information we calculate the
depth value in the pixel.

A picture is represented as a pixel matrix, where every pixel has a unique
coordinate position. In order to represent the problem mathematically we consider a
scalar-valued picture set /,(u,v), where (u,v)" denotes the coordinates of the pixel.

Figure 1.1: “Tsukuba” scene: Left: The left frame of scene; Right: The ground truth depth-map, estimated
between the left and the right pictures of the same set.

Let the left picture be denoted by I,(u,v). Then the right picture will be denoted by

I, (§ (u,v), ¢ (u, v)) where &(u,v) and ¢(u,v) show the new position of the pixel,
which was previously at position (u,v)". And the depth-map value in this pixel is an
another function: z(u,v)= f(£(u,v),{(u,v)). As we are working with real-world data,
which is continuous, not discrete, like the pixel notation, the actual displacement
position coordinates are not necessary integer values.

Having formulated the problem like that, we can state that the computation of the
depth-map is actually the computation of the depth values for every pixel of an image
(see Figure 1.1).

! An ability to make fine depth discriminations.
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1.3 Fields of application

The depth-map has many fields of application:

The main area of depth-map application is the robotics branch. A robot gets
information about the surrounding world through its visual sensors system. Having the
depth-map it can determine how far the objects around him are situated and even
determine its own position in the world. Of course without this information, machine
can not make movement decisions or even operate with nearby objects. Moreover, the
depth-map helps the robot to make a segmentation of the world’s objects and recognize
them (figure 1.2, left picture).

Another wide area of depth-map application lies in aeronautics and aero graphics.
Calculated depth-map helps to define the altitude and the speed of a flying aircraft or a
satellite. Coming to the problem from other side, a satellite or an aircraft can determine
the earth surface height above sea level, or cities infra structure, what is very useful in
region recognition.

Figure 1.2: Application fields of the depth-field: Left: Robot eyes ([WRMO07]); Centre: Human face
reconstruction ([YHRO04]); Right: Driver assistance system ([KB07]).

A relatively similar way of using the depth-field is applied in the driver assistance
systems. Novel car computers are capable to determine the motion around a car and
distances to the other cars at the street. Such systems allow preserving car from
hijacking or having an accident by making it stop or just by warning the driver that a
dangerous situation is approaching (figure 1.2, right picture).

Also depth-maps are widely spread in computer graphics industry. They allow
creating virtual models of real existing objects. For example it is enough to make 2 - 3
photos from different positions to reconstruct the human face in 3 dimensional virtual
worlds (figure 1.2, centre picture).

Science also uses depth-maps, for example, in crack detection. Using ultra sound or
X-rays it is possible to look inside a probe without destroying it. Depth-map helps to
determine the ultrasound or X-ray sensor position on the investigating object’s surface.

These were only a few examples that show the usefulness of the depth estimation
as a computer vision problem. And for every specific application there are specific
problems exist. With no doubts they should be taken into account and should be
considered, but the more important thing is to develop a reliable depth-map
computation algorithm for a general case.
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1.4 Definitions and notations

We denote the set of natural numbers as N and use N* for NU{0}. The set of integer
numbers is given by Z={...,-1,0,1,...} . The set of real and rational numbers are denoted as
R and Q respectively.

Let f = f(x,y) (this means “identical with”) be a smooth function; “smooth” means it
is as many times continuously differentiable in the variable x and y as required.
Further we denote:

fulxpy= LD

1= T

Vf = (ij — nabla operator

t
9
7 SN E AP AP _
V-Vf = 0 (fyj—axfﬂ'ayfy Jfat =8

oy

Definition 1: Let m,n € Z be numbers. We define integer intervals as
[m;n]=m,...,n
[m;n) =m,...,n—1

(m;n]=m+1,..,n

Definition 2: Any column-vector can be transformed into the corresponding row-
vector and vise versa by means of the transpose operation. Let v be a row-vector, then

Definition 3: Let v be a vector, than its length is defined as
b=

Definition 4: The highest occurring derivative in a partial differential equation
(PDE) determines its order. For example:
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e f.+f,=0 —is a first order PDE;
e f.+f,=0  —isasecond order PDE;
e Af=0 —is a second order PDE;

e futf, =0 —isathird order PDE.

Definition 5: In a PDE relating a function f to its derivatives, we denote

sometimes

e [ asthe dependent variable (as it is not known and depends on x and y.
e x and y asthe independent variables.

Definition 6: Non linear PDEs in a dependent variable f arise by coefficients of
derivatives of f* depending on f itself. For example:

e Af=0 —is a linear PDE;
o f-Af=0 —1is a non linear PDE;
e V.(f’Af)=0 -isanon linear PDE.

Definition 7: In order to convert an analog signal into its digital representation we

use the sampling procedure. Let f:R—>R be an analog function. Then the

corresponding discrete function f € R" is given for all Vk €[0;n—1] as
fk = f(kAX) 4

where neN" is a number of samples and Ax € R is a sampling interval.

Definition 8: We begin by noticing, that since f'(x)=lim f ()H?—f () =

Ax—0
SO =AY L (e A f(r- Ax)
Av—0 Ax Ax—0 2Ax
can be given by

a reasonable approximation of f, (kAx)

. % — forward difference approximation;

Ji= S ; ; S ON®
. ~ — backward difference approximation;
] e centre difference approximation;

in a similar manner we approximate f, (kAx) at

fi+1 — 2fi + fi—l
Ax? '
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1.5 Outline of the thesis

Variational methods are the most precise way, so far, to compute the optic flow. In
Chapter 2 the general structure of variational methods is briefly explained, together
with the meanings of the data and the smoothness terms. We adopt the famous
variational methods of Horn-Schunck and Brox et al. which were developed for optic
flow computation, to the depth-map reconstruction problem.

As the main goal of this thesis is the investigation of application of variational
methods to the depth-map reconstruction problem, in Chapter 3 we create a
mathematical model for correspondence problem, discuss constancy assumptions for
data term and chose a suitable smoothness term relying on the diffusion processes
theory. Also in this chapter we introduce the technique of automatic controlling the
variational process during solution, capable to improve the final result, handle on-run
solver mistakes and speed up the convergence process.

In Chapter 4 we discuss the depth-map reconstruction based on information from
two cameras. We formulate principles and criteria for the reconstruction and offer new
methods in addition to classical optic-flow methods, adopted for our problem. Later in
the chapter, we step by step derive several numerical schemes for implementing and
resolving the problem on a computer and achieve first results.

In Chapter 5 as a primary goal of the thesis, we extend all the theory foundation,
gained in previous Chapter, for the multi — view case.

This thesis is closed with the Chapter 6, where we combine the theory from the
above chapters in one and present and discuss our experimental results. After that we
make the conclusion of the thesis.









Chapter 2

Variational Optic Flow Methods

Calculus of variations is a field of mathematics that deals with functionals?, as
opposed to ordinary calculus which deals with functions. Such functionals in our case
are formed as integrals involving an unknown function and its derivatives. The interest
is in extreme functions: those making the functional attain a maximum or minimum
value [Els61]. Nowadays, variational methods are among the best performing
techniques in image processing for depth-map reconstruction: being global methods
and thus operating on entire image domain, they recover the depth-map as the
minimizer of a suitable functional, which we will call energy functional.

In this chapter we explain how to construct such energy functionals, we illustrate
the mathematical meaning of parts, of which the functional consists, and we show how
to find the unknown function — the depth-map which minimizes the constructed energy
functional.

2.1 General structure

Let us suppose that we are given a stereo image, represented as a number of
pictures of a certain scene from different positions and angles /,(u,v), i=L...,N, where
(u,v) denotes the point coordinates in image. And moreover let us suppose that we
would like to compute the depth-map field z(u,v). According to variational methods
we should construct an energy functional which has the following structure:

E(z(uv)= [ F(}1 UV Ly (U, V), 2(u, ), azg"v) , azg"v)jdudv 2.1.1)
o) u A%

2 The functions that take functions as theirs arguments.
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or in more general form:

E(Z(u,v)) = J-J.F(u,v,z(u,v), 8z(au,v) , 8Z(au,v) jdudv . (2.1.2)
o u v

The integration domain Q - is the entire image domain. Here the unknown
function z(u,v) has the dimensions which equal to the dimensions of the input set of

images. For the simplicity, let us introduce the following notations:

| Chy ) 1 Ch ) (2.1.3)
ou ov
The functional E(z(u,v)) consists of two terms: the data term and the smoothness

term. While the data term provides us with the information about depth, the
smoothness term distributes this information:

E(z)= HData _term(u,v,z)+ Smothness _term(z,,z,)dudv. (2.1.4)

Q

Such an approach guaranties us that the computed depth-map will be always
dense. For example, in a case of data term can not give us in some region more or less
useful information, the smoothness term fills in this region with information, computed
from neighboring regions.

2.1.1 Presmoothing step

Instead of using the original image set /,(u,v) as input, we will use the

presmoothed versions of it. It will help us to get rid of small noise and disturbances in
pictures, make discrete image data more suitable for calculating its derivatives via
difference schemes and thus improve the final result. The presmoothing step could be
done with the help of Gaussian low-pass filtering, e.g. via convolution with a Gaussian
kernel K ,, where p is the standard deviation:

Ir =K, *1,. (2.1.5)
The parameter p is a very important parameter since it greatly affects the final

result of the depth-map computation. From this place and so on, we will write J,

without p, but mention already presmoothed image.
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2.1.2 Minimization

Our main goal is to find such a function z(u,v), which minimizes the energy
functional E(z(u,v)). By another words, having constructed the energy functional, we

should minimize it in order to find the best solution for the depth-map. Moreover, if the
constructed functional (2.1.2) is strictly convex3, it will have a unique solution that
minimizes it.

The major formula of the calculus of variation was developed by Leonard Euler
(April 15, 1707 — September 18, 1783) and Joseph-Lois Lagrange (January 25, 1736 — April
10, 1813) in the 1750s. In an honor of these mathematicians it is called the Euler-Lagrange
equation.

The Euler-Lagrange equation is an equation satisfied by a function z of the
parameters u and v which extremises the functional (2.1.2), and F is a given function
which has continuous first order partial derivatives. The Euler-Lagrange equation then
is the partial differential equation:

F-4p g o, (2.1.6)

Tt dv

where the unknown function z(u,v) must necessary satisfy this equation.

In that way, in order to minimize our energy functional, we should solve the Euler-
Lagrange equation with homogeneous Neumann boundary conditions. This step is
done via discrete numerical schemes. We are working with discrete images which
consist of atom picture elements — pixels. The Euler-Lagrange equation is discretized
and approximated via finite-differences schemes. At the end we have linear or non-
linear system of equations. To solve it, a number of iterative numerical schemes has
been developed.

2.2 Construction of the energy functional

Since the energy functional consists of two parts — the data term and the
smoothness term (2.1.4) and both terms have its own meaning, we will build them
separately. For simplicity in this chapter as well as in the next two chapters we consider
the case of a stereo image given by only 2 pictures. All the theory derived for the case of
2 pictures is valid in the multi-picture case, and we will consider the extension to N
cameras in the fifth chapter.

Data term. The data term is a number of combined assumptions that certain
features of the image do not change, but remain constant from one picture to another.

3 A real-valued function f defined on an interval is called convex if for any two points x and y in
its domain and any ¢ in [0; 1], we have f(tx+(1—£)y)<tf (x)+(1-£)f ().
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The data term is responsible for supplying us with information about depth-field and
stand for the constancy assumptions that are used. The most general assumption used
in this paper is the brightness constancy assumption.

E @ - ot mY A

Figure 2.1: “Geometric primitives” scene: Left: Picture achieved by the left camera; Centre: The whole
scene; Right: Picture achieved by the right camera

To explain the main point of the grey-value constancy assumption, let us consider
figure 2.1. At the centre of the figure we can see “Geometric primitives” scene with two
cameras, shooting it to achieve a stereo image. At the right and at the left we observe
pictures gained by the right and the left cameras correspondingly. As we have noticed,
all the primitives shot by the left camera, are shifted relative to the primitives, shot by
the right camera. And the red ball has bigger shift than more distant from cameras
object — blue pyramid. Also we can notice that green cube, which is situated between
the red ball and the blue pyramid in depth, has smaller shift than the ball, but bigger
shift than the pyramid. So, if we could estimate this shift, and knowing the distance
between the cameras, we could calculate the distances to the objects in scene.

The grey-value constancy assumption is based on assumption that all the objects in
scene have lambertian surfaces*. It means that the grey value of a pixel is not changed by
the displacement:

Il(ulavl)zlz(uzavz)- (2.2.1)

This literally means that if /,(u,,v,) is the grey value of pixel at point (u,,v,) in the
first picture, this value remains equal to the grey value of pixel at point (u,,v,) in the
second picture. It is also very important to express the coordinates (u,,v,) through the
coordinates (u,,v,) and the unknown function z(u,,v,):

{ul = gg(uza"zaz(uza"z))Q (2.2.2)

v, = é’(uz,vz,z(uz,vz)).

Pay your attention that if /,(u,,v,) is another feature of the picture, which remains

constant from one picture to another of a stereo image, the statement (2.2.1) is still valid.
We can rewrite the equality (2.2.1) in the following form:

4 The perfect diffuse surfaces that scatter incident illumination equally in all directions.
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I (uy,vy) = 1, (uy,v,) = 0. (2.2.3)

But there is nothing ideal in real life, so the equality (2.2.3) as usual is not true. But
we can fulfill the following demand:

|]l (u17vl)_]2(uzavz)| — min/ (224)
or
|1, Gy, v) = I (1, v,)|” — min. (2.2.5)

We put the square in the formula (2.2.5) because of two reasons: we want to
penalize positive and negative deviations in the same way and the quadratic penalizer
leads to the linear system of equations. In the section 3.5 we discuss other penalizing
functions. Now we can write down the simplest data term based on the grey-value
constancy assumption:

2

Data term(u,v,z) = |11 (u,v) =1, (u,,v,)| , (2.2.6)

with coordinates expression (2.2.2).

Smoothness term. The smoothness term stands for the assumption that the
neighboring regions belong to the same object and thus these regions have similar
depth. The main role of the smoothness term is the redistribution of the computed
information and smoothing of depth outliers. In case we get no reliable information
from the data term, the smoothness term will realize its smoothing effect by filling in
the problem region with data, calculated from neighboring regions.

In fact, we introduce here an additional assumption that the depth-map is globally
smooth — a smoothness assumption. In such a way, we can write down the simplest
smoothness term, constituted by the homogeneous regularizer:

2

Smoothness _term(z,,z,) = |VZ , (2.2.7)

where |Vz| = 1/25 +zv2 .

As usual to control how much the smoothness term will prevail during the
computation, the parameter ¢ is introduced. If the parameter ¢ is larger, then the

computed depth-map will be smoother:

Smoothness _term(z,,z,)=@- |Vz|2 . (2.2.8)

Having constructed the data term and the smoothness term, we now can write
down the energy functional:
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E2) = [[|1,u,v) = L w0, + - V2] dudv, (2.2.9)
Q

or, taking into account (2.2.2):

E(z) = j j 11(E,0)~ L) +¢-|V2| dudv . (2.2.10)

Now we have to derive the Euler-Lagrange equation (2.1.6) from the functional
(2.2.10). Let us do it step by step to understand how it works.

Z—Z =2-(L,(£,0) -~ L,w,v))- (1, (5.6 +1,(5.£)5.) (2.2.11)

Pay your attention, that in the formula (2.2.11) we have the derivative only from
data term, since in smoothness term no function z(u,v) exists, but only its derivatives.

Thus this part of the Euler-Lagrange we will call data term of the Euler-Lagrange equation.

d d

L F +2F =20-div(Vz)=2¢ Az (2.2.12)
du ™ dv
. . 0’z 0’z
We have got here Laplacian of unknown function z(u,v): AZZF-FF.
u v

Correspondingly to the smoothness term, this part of the Euler-Lagrange we will call
smoothness term of the Euler-Lagrange equation. The Laplacian is the core of linear
diffusion process, which is identical to the Gaussian blurring process.

Combining (2.2.10) and (2.2.11) together and cancelling the common factor 2, we
can write the Euler-Lagrange equation for the functional (2.2.9):

(1, (EOE +T(ENC)-L(ED 1) -p-Az=0. (2.2.13)

After discretizing this equation we have linear or non-linear system. That depends
on the relations between u and z, and between v and z in functions & and ¢,. A
number of numerical schemes has been developed for efficiently solving such linear
and non-linear equations [Bru06].

2.3 The Euler-Lagrange equation

In this section we will construct more sophisticated energy functional and derive its
Euler-Lagrange equation. We will precede parallel with the famous Brox et al. method
which was developed for optic flow problems and integrates several successful
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concepts [BBPWO04]. First of all let us discuss the gradient constancy assumption and
then add it to our data term.

The grey value constancy assumption has one decisive drawback: It is quite
susceptible to slight changes in brightness, which often appear in natural scenes.
Therefore, it is useful to allow some small variations in the grey value and help to
determine the displacement vector by a criterion that is less sensitive to grey value
changes. Such a criterion is the gradient of the image grey value, which can also be
assumed not to vary due to the displacement. This gives:

VI, (u,,v,)=VI1,(u,,v,). (2.3.1)
This formula is very close to the one in (2.2.1). Doing the same steps like with the

grey-value constancy assumption, we can formulate the corresponding constraint that
must be fulfilled:

V1, (u,,v,) = VI, (uy,v,)]" — min, (2.3.2)
taking into account the coordinates derivation (2.2.2).

Now, we just add this constraint to our data term and use a weighted approach to
control the influence of each of the assumptions during the computation:

Data _term(u,v,z) = O-|, (u,,v,)~ I, (uy,v,)|" +(1=0)- VI, (u,,v,) = VI, (u,v,)", (2.3.3)

where @ €[0; 1].

For improvement we additionally introduce a ¥ function, which is in general a
penalizing function. Now we minimize two squared constancy assumptions, but using
such a quadratic penalizer gives us too much influence to outliers, that may appear
during the computation in depth-map. Brox et al. suggested the usage of another kind
of penalizing function that is given by the absolute value function:

W(s2)=s>+ 22, (2.3.4)

where A is a small constant.

By this definition, function (2.3.4) is still convex and that’s why it is easier to
minimize. And, what is more important, function ¥ penalizes the outliers in a less
severe way. Moreover, we have possibility to control this penalization with the
parameter A.

The type of smoothness term that we have constructed is not always the most
suitable one, since the smoothness assumption implies that the resulting depth-map has
no discontinuities. In real world, which is consists of different objects these objects have
different distance from an observer. And the object’s boundaries should be preserved,
but not smoothed
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The Laplacian, that we have now, constitutes the Gaussian blurring process, which
realizes smoothing in the same manner in all directions. Such an approach smoothes all
the discontinuities which appear in depth-map. If we would like to preserve the
discontinuities from smoothing, we should somehow decay the blurring process in
discontinuities regions. It is done by imposing piecewise smoothness, by penalizing the
variation from the depth-map, using the same ¥ function. It gives us more accurate
and sharp results.

Now, let us add the function ¥ to the data term as well as to the smoothness term
and rewrite the energy functional (2.2.8):

E) = [[¥(0-11,v) ~ L) + (1= ©)- V1, a,v,) = VI v, )+

X (2.3.5)
Q- ‘P(|Vz| )dudv
or, reformulating the gradient:
®'|[1(”1aV1)_[2(u2aV2)|2 +
E(z) = [[W] 0=0):|1,, (u,v) = I, (v, + |+~ ® (V2] dudv (2.3.6)

2
(1-0)- [1v(”1aV1)_[2v(”2aV2)|

and, taking into account (2.2.2):

©-|1,(&) L) +
E(z2) = j j Pl (1-0)-|1,,(&,0) — L, u,v) + [+p - P(V2|"dudv . (2.3.7)

(1-0)-|1, (&)~ 1, v

Now let us derive the Euler-Lagrange equation for this energy functional. The data
term of the Euler-Lagrange equation is given by:

O-|[,(&,0)~ 1, (uv) +
¥ (1-0) |1, (&,8) — L, () +|-
(1-0)|1,(£,0) — L, ) (2.3.8)

20 (1,(&,0) = 1, ,0)- (1, (&, OE, +1,(£,0)¢. )+
21-0)-(1,,(6,) L, @,v))- (1, (£, &, +1,,(E,0)¢. )+ |
21-0)(1,(£,0) — I, (w,v))-(1,,, (&, O, + 1, (£,0)C.)

oF

R

And the smoothness term of the Euler-Lagrange equation reads:
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d d >
— 20 - divly : 2.3.
0 F, + o F, =2¢ dzv(‘P (V[ Vz), (2.3.9)

1
W2+ 2

Now, having successfully accomplished the above calculations, canceled the
common factor 2 we are ready to construct the Euler-Lagrange equation:

where W'(s°) =

O-|1,(&,0)~ L) +
| (1-0) |1, (&)~ L, (w,v)| + |
(1-0)|1, (&)~ I, (u,v)

O-(I,(&,0) - Lw,v)-(1,,(&OE +1,(£,0)4. )+
(1-0)-(1,,(£.0) - L, w,v)-(1,,,(£,E +1,,(E,0)C. )+ |- (2.3.10)
(1-0)-(1,,(£.0) L, () (1,,,(£.OE, +1,,(£,$)C,)

Q- div(‘{" (|Vz|2 ) Vz): 0.

It looks a little bit more sophisticated than the one in (2.2.12), but gives much better
results. When discretizing (2.3.10) we obtain a non-linear system of equations due to the
functions & (u,v,z(u,v)) and ¢ (u,v,z(u,v)). In that case we can refer to the time-

marching numerical scheme, which considers this equation as a steady-state of the
following evolution:

O-|[,(&,)~ L) +
¥ (1-0)|1,,(£.0) = I, (wv)| + |-
(1-0)-|1,,(£,$)~ 1, (w,v)’
O-(1,(£,) - L) - (1, (&6, +1,(5,0)8.)+

(1-0)-(1,,(£,0) L, ,»)-(1,,, (&€, +1,,(£,)S. )+ | - (2.3.11)
(1-0)-(1,,(£,) = 1, (u,v)- (1, (E.OE +1,,(£,$)C,)

0 div(‘l"(|Vz|2) : vz)

& _
ot

It means, that there is some moment of time we will achieve the steady state, when
function z(u,v) does not change in time: a_jT)O' This is an iterative numerical
scheme, and as usual it takes a lot of time to gain the steady state. In general the
equation that should be solved is pretty big and it takes a lot of computations. When we
need real-time performance, we should use some more sophisticated methods, like
multigrid [Bra77], or problem linearization, which we will consider in the next chapters.

In case when the object is situated too close to the observer, and thus the
displacement of this object is very large, the variational method can stuck in local
minima instead of converging to the global one. In that case we may not achieve the
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desired solution. To solve this problem we use a coarse-to-fine level strategy [BAK91].
We scale down the original stereo image to some coarse level and apply our method to
this image. We have chosen such a down-scale level that our problem had unique
solution close to the global minimum. This solution is used as the initial data for the
next coarse level, which is closer to the fine one. We continue in such a manner until we
finally reach the original scale. In the section 4.7 we will consider this process in detail.

2.4 Summary

In this chapter we have presented the general structure of variational methods for
depth-map reconstruction, we have explained how to design energy functionals as well
as the meaning of its parts: the data term and the smoothness term; how to derive the
Euler-Lagrange equation from the energy functional. We have also briefly discussed
constancy assumptions that help us construct more reliable data terms, penalizing
functions which downweight outliers and lead to a non-linear diffusion process for
smoothing the depth-map, but preserve edges and the problem of numerical solution.
Moreover, the coarse-to-fine level strategy was described to avoid that the method gets
stuck in local minima when we deal with short distant objects.

In the next chapters we will refer to these foundations and consider these principles
and approaches in more detail.









Chapter 3

Matching Process

Nearly everyone has used a camera and is familiar with its basic functionality: you
indicate your desire to record an image of the world (usually by pressing a button), and
the image is recorded onto a piece of film. One of the simplest devices for taking
photographs in real world is called the pinhole camera. The main principles of the
pinhole camera are described and its projection matrix which is derived in [PH04].

In this chapter we will consider the modeling of data term and smoothness terms
more closely. Constancy assumptions are the core of any data term. Constructing and
combining together constancy assumptions requires prior knowledge about the
imaging device, which describes image quality, about the scene illumination, and object
surfaces which describe incident light reflection. We will discuss in detail the
advantages and the shortcomings of different constancy assumptions for the data term,
which are frequently used in the literature.

The design of the smoothness term is closely related to the type of the filling-in
effect, which in its turn related to the diffusion process. Therefore, the different
smoothness constraints are classified in accordance with the induced diffusion process.
To show the connection between regularization methods and diffusion filters, we
should discuss in this chapter different types of diffusivities and corresponding types of
diffusion.

The control of the matching process gives us a number of advantages like
automatic controlling the quality of computations, quick error recovery, opportunity to
speed up the solver, and others. We will discuss these controlling techniques as well in
this chapter.

21
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3.1 Correspondence

We assume that the imaging system follows the pinhole model [PHO04]. A pinhole
camera consists of a light-tight box with a tiny hole at one end (figure 3.1). When the
hole is uncovered, light enters this hole and falls on a piece of photographic paper that
is affixed to the other end of the box. Although most cameras are substantially more
complex than the pinhole camera, it is a convenient point for simulation.

Therefore, the task of the camera simulator is to take a point on the image and
generate rays along which light is known to contribute to that image location. Because a
ray consists of an origin point and a direction vector, this is particularly simple for the
pinhole camera model of figure 3.1: it simply uses the near plane for the origin, and the
vector from the eye to the near plane as the ray’s direction.

Film

Pinhole .4

Figure 3.1: A pinhole camera.

Another way to think about the pinhole camera is to place the film in front of the
pinhole, at the same distance (figure 3.2) Note that connecting the hole to the film
defines exactly the same viewing volume as before. Of course, this is not a practical way
to build a real camera, but for simulation purpose it is a convenient abstraction. When
the film (or image) plane is in front of the pinhole, the pinhole is frequently referred to
as the eye.

Far plane

Figure 3.2: When we simulate a pinhole camera, we place the film in front of the hole at the near plane,
and the hole is renamed the “eye”.
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To project a three dimensional point M(x,y,z) from real world into a two
dimensional point m(u,v) on a camera’s film we need to transform 3D points
coordinates (x,y,z) via a projection matrix into 2D point coordinates (u,v). The
projection matrix describes a pinhole camera, its position and direction and has

dimensions 3x4. There are three coordinate systems involved — camera, image and
world [H]94].

(g, %)

Figure 3.3: Coordinate system’s transformation: Left: Perspective projection of a 3D point M onto image
plane; Centre: The image coordinate system transformation; Right: Rotation and translation projection
from world coordinates onto object coordinates. (WMWO07])

Camera. This coordinate system transformation constitutes the perspective
projection (figure 3.3 left). This projection can be expressed as a linear mapping between
homogeneous coordinates:

X
suy (1 0 0 O
svi=l0 1 0 o] 3.1.1)
s) oo 1 0 i

Image. The image coordinate system transformation gives us the intrinsic camera
parameter description matrix J. This matrix provides the transformation between an
image point and a ray in Euclidean 3D space. Matrix J is a 3x3 upper triangular
matrix, called camera calibration matrix:

a, 0 u,
J=[ 0 a v, (3.1.2)
0 0 1
and its inverse matrix J' is:
1y %
au all
Jh=| o0 é——%—, (3.1.3)
o 0 1
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where «,, «a, are horizontal and vertical pixel sizes in [pixels/length] correspondingly
and (u,,v,) is the principal point, which is the point where the optic axis intersects the
image plane [Rob95].

Once matrix J is known the camera is termed calibrated. A calibrated camera is a
direct sensor, able to measure the direction of rays like a 2D protractor.

World. The world coordinate system transformation constitutes the extrinsic
camera’s parameters description matrix D. This matrix provides the Euclidean
transformation between the camera and world coordinates:

’, (3.1.4)

where R, are components of a rotation matrix R and ¢, ¢, t, are coordinates of the

camera in Cartesian coordinate system. We consider cameras that are not rotated, i.e.

R =0, i#j
" / . Let us rewrite the matrix D with respect to this assumption:
R ;=1 i=j
1 0 0 ¢
0 1 0 ¢
D= g (3.1.5)
0 0 1 ¢
0 0 0 1
and its inverse matrix:
1 00 -t
4 10 1 0 —¢
D™ = b (3.1.6)
0 0 I —¢
0 00 1

Now we can construct the projection matrix of our pinhole camera, which will
consist of intrinsic camera parameters matrix J and extrinsic camera parameters D:

Su *

sv|=[s0*]p[ 7 |. (3.1.7)
z

S

1
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To find pixels coordinates u,, v, of the image produced by camera i which
correspond to pixel coordinates u;, v, of image produced by camera j, we have to

write down the correspondence equation:

su; - i
sv, | =[7,0']p, D" Vlf , (3.1.8)
N

where s is a scaling parameter and z is the depth-map z(u,v) For more details see
[RDY6].

Let us substitute (3.1.2), (3.1.3) and (3.1.5), (3.1.6) into (3.1.8) and derive two
formulas for coordinate’s expression (2.2.2):

1oy ik
| | 100 £ZY(1 00 ¢ a, Ay
7y a’ 0 uj 0 g : 1 Vi “
' . 01 0 ¢}|01 0 -2 ||z20 — ——"]y
sv, |=| 0 o vi O e ’ al a |
' 0 0 1 ¢ 001 -¢ ‘ v
s 0O O 1 o0 z z 0 0 1
0 0 0 1 0 0 0 1
— 1 -
Zul.—ué
j i -
R [
:Oav"v({O-OOIti,-OOI_ty. PR
t _tl 1
0 0 1 0 : : %
0 0 0 1 0 0 0 1 z
1
ui_u([) i
J zZ i tx
al{OugO(l)(l)gt; %
=l 0 a V({O.OOI% zv"_ivo t,
t [04
0 0 1 0 z Y
0 0 0 1 z—t,
1
P iué+t){—t;
al 0 ul 0 %
=0 a v/ 0 Zv’aiVOth; t,
00 0 z+t! -t
1
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i
J i 0 J J J
za +al At +zuy +ujAt,

u i

u
i
Y. —V ) ) )
=| za! —L+alAt, +zv] + V] At
i v ¥y z
aV
zZ+ AL,

i
U —u .
za] ——+alAt,
u; = i A +ul;
z+ At
o (3.1.9)
V.=V )
Za:lil_oﬁ'a‘{Aty
a, ;
v, = +v].
z+ At

We assume that pixel dimensions of any used camera is equal, i.e. @, =a/ and
al =a!, Vi, j. Moreover, we assume that u, =0 and v; =0, Vi. And now let us first

consider the case when cameras shifted relative to each other only in x-direction equal
to Atr,. Now we can rewrite (3.1.9) in a much simpler form:

(3.1.10)

3.2 Grey-value constancy assumption

Constancy assumptions are the core of any data term. In the literature we can find a
lot of different constancy assumption developed for one or another particular condition
[HS81], [TP84], [BBPWO04]. Let us describe them briefly. The constancy assumption on
image brightness or grey-value constancy assumption is an assumption that the
brightness of all the objects in scene is the same from any angle of view. This constancy
assumption is the most popular one, since it was developed for any motion type and
gives us a big amount of valuable data for small displacements. The major lack of this
approach is a big sensitivity to illumination changes. The constancy assumption on image
derivatives or gradient constancy assumption considers not a picture’s intensity in a
pixel, but its derivative. Such an approach gives us very good results on illumination
changes and on translational, divergent and slow rotational motion type. Another
constancy assumption, based on higher order derivatives is called constancy of the
Hessian. Both these derivatives — driven methods have the same disadvantage — they are
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very inaccurate for fast rotational motion type. To eliminate this shortcoming, motion
invariant constancy assumptions were developed. The constancy of the gradient norm or
gradient magnitude constancy assumption is based on idea of creation motion invariant
image features from “oriented” derivatives instead of imposing constancy on the
(spatial) brightness gradient and therewith on its orientation. Correspondingly we can
find rotation invariant features in Hessian — its trace and determinant: constancy of the
trace / determinant of the Hessian. The constancy of the trace of the Hessian gives us the
Laplacian constancy assumption, and the constancy of the determinant of the Hessian
gives us the Hessian determinant constancy assumption. When working with colour
images, we have to take in account the entire colour channels of image and the RGB
colour brightness constancy assumption was developed.

’ . _— \
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Figure 3.4: “Geometric primitives” scene: Top Left: Picture achieved by the left camera; Top Centre:
Picture achieved by the right camera and represented as a 3D surface; Top Right: Picture achieved by the
right camera; Bottom Left: Diagram of the light intensity of the 250-th line of the top left image; Bottom
Centre: Correlation of the intensity diagrams; Bottom Right: Diagram of the light intensity of the 250-th

line of the top right image.

The grey-value constancy assumption will be the base assumption in our model.
All the pictures of the stereo image are shot at the same moment of time; it means that
we will not meet the problem of illumination changes. Let us consider the figure 3.4,
where we can see the left and the right pictures of the stereo-image. As we know the
photo-picture could be represented as a function, which takes as arguments the position
of a point (u,v) and returns the light intensity: Intensity = I(u,v). Using such a function,
we can build a 3 dimensional surface for each picture (see the top centre illustration of
the figure 3.4). Such a representation is very useful: we can make a cut if this surface
with the plane (yellow line in figure 3.4), and than plot the diagram of light intensity in
this cut (see bottom left and right illustrations of figure 3.4). As usual we deal with
discrete pictures, where the light intensity is encoded within [0; 255] interval, where 0
means “no light” and represent black color, and 255 represents white color in grayscale
images. As we can see on these diagrams we have blocks with the same light intensity,
or brightness. For example, the green block, which represents the cube of our scene, has
intensity of 45 in 250-th cut-line on both pictures. The same we can observe with red
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block that have the same brightness on both pictures. That was the main idea of the
brightness constancy assumption. At the bottom centre illustration we can observe how
these two diagrams are correlated.

Let us, taking into account (3.1.10), formulate mathematically this assumption as
follows:

o,At

Li(u,v)—1,(u+ ~.v)=0. (3.2.1)
z

u t)(

z
and implicit. When we construct a data term, we should overcome these problems. This
is done via two different techniques: first order Taylor approximation [AK02] and linear
interpolation method. Both of them are described in detail in section 4.4 as well as their
advantages and shortcomings.

Unfortunately, the constraint on is rather inconvenient since it is nonlinear

. . . . . a, At
Using the first order Taylor approximation we substitute the term 7, (u+——,v)
z

oAt

with 7,(u,v)+ 1,,(u,v). Thus we have:

I (u,v)—1,(u,v)— AL

L, (u,v)=0. (3.2.2)

The data term built on this assumption:

o At ?
7. (u,v)j . (3.2.3)
zZ

Data — termbrightness = ([1 (u7 V) - 12 (u7 V) -

3.3 Gradient constancy assumption

When we have no changes in illumination, the grey-value constancy assumption is
very suitable. But it still depends on the assumption that all the objects in our scene
have lambertian surfaces. But in real life we have to use more suitable illumination
model. On the figure 3.5 we observe the case when brightness constancy assumption
will not bring any success.
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Figure 3.5: “Geometric primitives” scene: Top Row: Pictures achieved by the left, centre and right
cameras correspondingly; Bottom Row: Diagram of the light intensity of the 250-th line of the images
from top row correspondingly.
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Let us consider the Phong illumination model, which was suggested by Bui Tuong
Phong in 1973 [PHO04]. According to his model, the reflection from a surface is divided
into three subcomponents: specular reflection, diffuse reflection, and ambient reflection

(see figure 3.6).

Ambient + Diffuse + Specular =  Phong Reflection
Figure 3.6: Graphical representation of Phong lightning equation.
Mathematically this equation can be written as follows:
[ntenSily = [ambient + (2 : ;)IDijﬁme + (; ' ‘_})a [Specular 4 (331)

where / is a vector, directed from a point of the surface to the light source and r its
reflected vector, n is a normal vector to the point of the surface and v is a vector
directed from the point of surface to the camera (figure 3.7).
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Figure 3.7: Vectors used in the Phong lighting
equation of a surface point.

As we can see the specular reflection term is depended on the camera’s position.
That’s why the centre camera on the figure 3.5 is blinded by the spot of the reflecting
light, and the picture became too bright. Now the intensity of green block at the bottom
left diagram of figure 3.5 (equal to 45) does not equal to the same green block at the
bottom centre diagram of figure 3.5 (equal to 150). Thus these diagrams became totally
incomparable.

To enhance our results we will add one more constancy assumption to our data
term: the illumination invariant gradient constancy assumption. At the top row of the
figure 3.8 we observe the result of fuzzy edge detector, applied to pictures of our stereo
image. The fuzzy edge detector shows scaled to [0; 255] gradient magnitude in each
pixel and represents derivatives of the image in corresponding diagrams. The main
point of this idea is that under changing of the illumination conditions the object’s
edges on pictures are preserved.

At the bottom row of figure 3.8 we see the scaled gradient magnitude that
represents the derivatives of the 250-th line of original pictures. They are pretty big at
the object’s boundaries, and almost didn’t suffer from the blinding of the centre camera
— we can easily correlate them. The gradient constancy assumption, built on this
information helps us greatly in combination with brightness constancy assumption.

Flgure 3.8: ”Geometrlc prlmlthES scene Top Row Fuzzy edge detector apphed to the plctures achleved
by the left, centre and right cameras correspondingly; Bottom Row: derivatives of the light intensity of
the 250-th line of pictures achieved by the left, the centre and the right cameras correspondingly.
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The gradient assumption with respect to (3.1.10) obtains the following form:

AL g, (33.2)
z

VI, (u,v)—VI,(u+

Since the spatial gradient is a vector with two components, we obtain two
constraints this time. They are given by

o, At

]lu(uﬂv)_IZu(u-‘r X’v):();
z (3.3.3)
At

]lv(u,v)—IZV(u-i-a“ ~,v)=0.
z

Using the same first-order Taylor approximation method like in brightness
constancy constraint to get rid of implicitly, we achieve:

At

]lu(u7v)_12u(u7v)_au - ]2uu(uﬁv):0;
z (3.3.4)
At

Ilv(u7v)_]2v(u7v)_au XIZvu(u"}):O'

Squaring and adding them together produces the needed part of the data term:

o, At

2
Data _term,,,;,,, = (Ilu (wu,v)—1,,(u,v)— 1, (u, v)j +

(3.3.5)
o, At

(llv(u,v)—IZV(u,v)— [Zvu (uav)j .

3.4 Diffusion process

Diffusion is a term from physics: diffusion is the net action of matter (particles or
molecules), heat, momentum, or light whose end is to minimize a concentration
gradient. A diffusion process is characterized by two standings. The first one is that the
diffusion process always preserves the mass of matter [Wei98]. And the second is that
the diffusion process equilibrates differences of matter concentration. These standings
are easy to describe with two formulas:

1. Fick’s law describes the equilibration of concentration differences: j=—-g-Vu.

Concentration gradient Vu creates flux j, and g is a diffusion tensor.

2. Continuity equation describes conservation of mass: 0,u = div(g-Vu).
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In such a way, we have derived the diffusion equation:
ou=div(g-Vu). (3.4.1)

In a case of linear diffusion (when we do not consider local structure of matter, i.e.
the diffusion tensor is equivalent to identity) we obtain the simplest diffusion process:
Ou=Au.

To understand how it works, imagine a cap of milk. You can shake this cap
somehow to create waves on the milk surface. But as soon as you put this cup on a
table, the milk will start settling down and in some seconds you will have no waves
anymore:

Figure 3.9: UdS logo. Linear diffusion example: From left to right: original state and linear diffusion
process with time.

You still have the same amount of milk (mass preservation), but the difference
between any two drops of milk at the surface is minimal — you have flat surface
(equilibrium of concentration differences). In image processing, diffusion is very useful
for image enhancement. For example — for denoising an image. When we want to get
rid of high frequencies (noise or some small details) but preserve edges from blurring.
Unfortunatly it is almost impossible to do this using simple linear diffusion.

So, let us consider nonlinear diffusion. This process avoids delocalization and
blurring of edges. It is described with the following equation:

Ou= div(g(|Vu|) -Vu) on  Qx(0,0) (3.4.2)
with stable initial and boundary conditions:

u(x,0)= f(x) on Q;
(3.4.3)
ou=0 on 0Qx(0,00).

Function g() takes as an argument a fuzzy edge detector [Vu| and should be chosen

as a decreasing nonnegative function. It means that on the edges, where the image
derivatives are high, low values of the function g() will inhibit diffusion. Now let us
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suppose that we want to smooth the UdS, preserving its edges with help of diffusion
process. And let us, with help of the following illustration, compare the best result of
eliminating noise with linear diffusion process and, nonlinear diffusion process:

00

- W

Figure 3.10: UdS logo: Left: Linear diffusion. Right: Nonlinear diffusion.

We can clearly see that in the right column, our owl has no plumage anymore but
the edges are very good preserved [ALM92].

Singular diffusion filters lead to a piecewise constant images as it was shown in
[WWS05]. As function g(), diffusivity, we use singular diffusivities. As a prototype for a

class of singular diffusivities we consider the family:

g(Vu)) =

! ; p=1. (3.4.4)
[Val”
In this chapter we will consider two singular diffusivities. Total variation (TV)

diffusivity, that has interesting properties such as finite extinction time and shape-

preserving qualities — the case when p =1: g(|Vu|) = |V_1| For p>1 the diffusion not only
u

preserves edges but even enhances them. Balanced forward-backward (BFB) diffusivity —

> . The most problems with singular diffusivities are

the case when p =2: g(|Vu|) =

that it is possible to have very small values of |Vu| and in such cases our function g()

becomes unbounded. That implies numerical instability, and failure of solver. As a
result, iterative numerical schemes may reveal slow convergence, and in general
numerical errors can be amplified. In order to eliminate all these problems, it is
common to regularize the diffusivity function by replacing it by the bounded
diffusivity:

g(Vul) = ; pel. (3.4.5)

Vu|2 + &2

As summary for the diffusion process description, let us consider the diffusion
process on color images in figure 3.11
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Figure 3.11: “Carrier-pigeon” scene: Top Left: Original image. Top Right: Linear diffusion with periodic
boundary conditions. Bottom Left: Total variation diffusion; Bottom Right: Balanced forward -
backward diffusion. (The original photo is taken from [WF(07] and processed by the thesis author’s
freeware application [WPXO07]).

Figure 3.11 demonstrates linear, total variation and balanced forward-backward
diffusion. The elimination of noise with edge preservation (and even enhancement in
case of BFB diffusion) is very good seen on Figure 3.12. Gradient |Vu| is very sensitive

to high frequencies, and all the pictures show only contours of the objects in scene.
These images are the results of fuzzy edge detector processor with original image as
initial data. At the top left picture we can observe not only contours but also a lot of
high frequencies where spatial derivatives are high. At the top right image we have get
rid of high frequencies, but all the edges are extremely blurred — we have lost a lot
important information about objects geometry. At the bottom row we see no high
frequencies, and all the object edges are good preserved. In case of balanced forward-
backward diffusion, we can even notice, that the fuzzy edge detector gave us more
bright boundaries than in case of total variation diffusion, and even in case of original
image.
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Figure 3.12: “Carrier-pigeon” scene under the fuzzy edge detector: Top Left: Original image. Top Right:

Linear diffusion with periodic boundary conditions. Bottom Left: Total variation diffusion; Bottom
Right: Balanced forward — backward diffusion. (The original photo is original taken from [WF07] and
processed the thesis author’s freeware application [WPX07]).

3.5 Preserving discontinuities

Let us consider formulae (2.3.5) and (2.3.9) more close. Comparing them, we can
derive a connection between the smoothness term and the smoothness term of the
Euler-Lagrange equation:

Smoothness _term(z,,z,) = ¢-‘I’(|VZ|2), (3.5.1)
Smoothness _term,,, | uorange = 29" div(‘P' (|Vz| % Vz). (3.5.2)

The diffusion process, that will take place during the solution, and that is
introduced by the smoothness term, is determined by the penalizing function ¥ . In
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general function ¥ takes two parameters: ¥ (V/,Vz), and its derivative ¥'(VI,Vz) is
called diffusivity. Let us discuss briefly describe different diffusivities, described in the
literature [Bru06], [DKA95], [GR92] and corresponding diffusion processes.

e Homogeneous diffusion is the simplest form of diffusion, based on linear diffusion.
As a consequence, the resulting solution — depth-map will be homogeneously blurred
and semantically important edges may be dislocated. As a penalizing function is used

the Tikhonov regularizer: W¥(VI,Vz) :|Vz

diffusion: u, = Au.

?, which corresponds to the homogeneous

e Linear isotropic diffusion is a more advanced diffusion process, which is image —
driven. It should be constructed in such a way, to respect discontinuities in initial stereo
image by reducing smoothing at image boundaries. Let function g(s) is a decreasing
smooth function, then the penalizing function will be written as:

Y(VI,Vz)= g(|VI|2)-|Vz|2. Such a penalizing function leads us to the linear isotropic
diffusion: u, = div(g(|VI |2)Vz). The most disadvantages appear when we deal with high

textured objects, which have more image boundaries. This gives over segmented depth-
maps.

e Linear anisotropic diffusion is also image-driven diffusion, but in contrast to the
linear isotropic diffusion, can provide smoothing along image edges. It is done with
help of a regularized projection matrix D(VI) on VI*, which in contrast to normal

1
gradient is definite as follows: VI* :( ; j The projection matrix D(V/) has form:

u

D(VI) = ! - (VI VI + 2I). The penalizing function W(VI,Vz) now has the

VI +24
following look: W(VI,Vz)=Vz'D(VI)Vz with corresponding diffusion process:
u, = div(D(V[ )Vz). To understand how it works, we should realize that matrix D(VI)

2
has two eigenvectors Vf and Vf* with eigenvalues /11(|V[ |) :2/1—
VI +22°
2 2
vi|"+ 2 : : : . N
A,(VI]) =-————- The isotropic behaviour at flat image regions, i.e. when [VI|—0:
Vi +24
V1}m0/11(|V1|):%, ‘%moﬂz (|V[|):%. And the anisotropic behaviour at image edges, i.e.
when |VI | —> 00 ‘vlll‘m A (|V1 |) =0, ‘vlll‘m A, (|V1 |) =1. This approach gives better results than

isotropic image-driven one, but still suffers from high-textured regions in images.

e Nonlinear isotropic diffusion is very close to the linear isotropic diffusion, but
instead of using boundary information from the initial image, it uses feedback from the
evolution - still calculating depth-map. So, it is a depth-driven diffusion process, which

determines by the following penalizing function: W(VI,Vz)= ‘P(|Vz|2). Here function ¥
can be any increasing, differentiable, convex in its argument, and bounded. The

corresponding isotropic nonlinear diffusion process: u, = div(‘{" (|Vz|2)Vz).
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e Nonlinear anisotropic diffusion is also exists for depth-driven process. It also has
advantage of smoothing along edges of depth-map. It uses penalizing function as a
trace of the matrix: W(VI,Vz) =¥ (VzVz"). Such an approach leads to the anisotropic
nonlinear diffusion: u, :div(D(Vz)-Vz), where D(Vu)=W¥'(VzVz"). If v,, v, are the
eigenvectors of VzVz' and g, u, the corresponding eigenvalues, then D(Vu) has
eigenvectors v,, v, with eigenvalues ¥'(y,), ¥'(x,) and this is exactly the desired
anisotropy.

It is very difficult to use image-driven diffusion processes, since we deal with
stereo-images, which are represented by a number of pictures. In this paper we use the
homogeneous diffusion process and the nonlinear isotropic diffusion process. Linear
diffusion is the simplest among diffusion processes, and could be applied to the wide
variety of variational problems. Substituting the Tichonov regularizer

TTichonov (Sz) = S2 (353)

into the formulae (3.5.1) and (3.5.2) we will have:

2

, (3.5.4)
Smoothness _termy,,, | oange = 29" div(Vz) =2¢-Az. (3.5.5)

Smoothness _term(z,,z,)=@- |Vz

Using the nonlinear isotropic diffusion is a great improvement. It preserves and can
even enhance edges in depth-map, and thus helps to segment different objects in scene.
As penalizing function we will take the Charbonnier regularizer [CABB94]:

, 2
\PCharbonnier (‘Sz) = 2/12 1 + 2_2 - 2}“2 (356)

and the Perona-Malik regularizer
\PPer(ma—Malik (Sz) = /12 ln(/lz + Sz) - /12 ln(/lz) . (357)

Let us first consider the Charbonnier regularizer. To understand how in works we
should write down its diffusivity function ¥'(s’) and its flux function ¥'(s*)-s. Its
diffusivity function:

A
\P'Charbonnler (Sz) =T (358)

A +s?
and its flux function:

As
q)Charbonm‘er (S) = ﬁ . (359)
A +s
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Now let us consider the plots of these functions:
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Figure 3.13: Charbonnier regularization: Left: Corresponding diffusivity. Top Right: Corresponding flux
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function.

If we think about 1D diffusion process, we have the following equation for the
nonlinear isotropic equation:

u, =(¥'(z2)z,) =(@(z,)), = '(z,)z, - (3.5.10)

The diffusivity function is a monotonically decreasing function, see figure 3.13.
From formula (3.5.10) we can see, that when we have an edge in out image, than its
derivative becomes larger, and thus the diffusivity becomes smaller, attenuating
diffusion. Also from the figure 3.13 we observe, that the flux function is monotonically

increasing, it means that ®'(s)>0, Vs>0. Thus the right part of equation (3.5.10) is

always positive and we have always smoothing of forward diffusion.
Now let us consider the Perona-Malik regularizer [PM90] and compare it with the
Charbonnier regularizer. The derivative of the Perona-Malik regularizer is:

' 5
\P Perona—Malik (Sz) = /12 N ,5‘2 (3511)
and its flux function:
® (5) =2 (3.5.12)
Perona—Malik /12 N S2 . e

These functions are plotted at the figure 3.14.

In contrast to the Charbonnier penalizer, the diffusivity function corresponded to
the Perona-Malik penalizer falls faster (compare the cross points of the graph and
lambda-line). And, what is more important, the flux function now is not monotonic. We
observe that ®'(s) >0 for s<A and ®'(s)<0 for s > 4. It means that for s <A we have
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forward diffusion process and thus smoothing, and for s>A1 we have backward
diffusion process and thus edge-enchasing.

dbis)

Yeish)

Figure 3.14: Perona-Malik regularization: Left: Corresponding diffusivity. Top Right: Corresponding flux
function.

Discussing formulae (3.5.8) and (3.5.11) we must say that Charbonnier penalizer
corresponds to the total variation diffusion, and Perona-Malik penalizer corresponds to
the balanced forward-backward diffusion [BWSWO03]. These theoretical computations
explain the results, illustrated in figure 3.14.

3.6 Controlling the matching process

To control the matching process during the computation is a very important task,
since even a small error at the beginning of international process can affect the final
result significantly. As usual, scientists before starting the calculations define the setup
control parameters (time step, smoothing parameters, etc.), which are kept fixed during
the computations, start process and after that, gaining the result, estimate the relative
error. Nonlinear variational methods can be very slow since they need time-marching
numerical schemes that as usual waste too much time to converge. And such an
approach, when we should wait till the end of calculations, makes them even more slow
and useless for industry.

Another very important role of the controlling the matching process is follows: if
we find a method capable to estimate the speed of method’s convergence and if we
know how to influence upon it, it appears to be possible us to interact with the iteration
process on run.

It is possible to control the convergence of variational method during the
computation via estimating the energy functional after each (or after each N) iteration.
This gives us a possibility of immediate computational error recognition and recovery.
More flexibility gives us the possibility of automatic picking up setup control
parameters. This approach, combined with controlling the matching process allows us
to change these setup parameters automatically not only on setup and calculation
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beginning, but even during the calculation. First of all, it gives the possibility to try
different control parameters for problem iteration, and consequently fix up numerical
problems on run. Second, it speeds up the convergence of the method greatly.

The energy functional (2.1.4) we can rewrite in the following form:

) widthheight ) . .
Sum" = Z ZData _term(u,v,z") + Smothness _term(z”,z), (3.6.1)

u 2
u=0 v=0

where subscript  denotes the iteration number. During the computations, solving the
Euler-Lagrange equation, on each iteration we are finding the function z”(u,v). In
ideal case function z*(u,v) is our depth-map, and the functional (2.1.4), if the
smoothness term was chosen properly, is minimal. By other words:

Also in ideal case we will have monotonous convergence, which can be written as
two mathematical formulas:

Sum®™ > Sum"’ | Vi jeN, (3.6.3)

Sum® —Sum™? > Sum“ — Sum "7 Vi, jkeN, (3.6.4)

The formula (3.6.3) says us than the row Sum" is strictly monotonically decrescent:
each subsequent member is smaller then preceding. The formula (3.6.4) guaranties us
that the row Sum® converges to some definite value. We check both criteria on
violation and thus have powerful tool of analyzing and controlling the matching
process.

The energy functional representation (3.6.1) gives us also the reach material for
relaxation methods, which definitely help to speed up convergence. For the further
information refer to [Ter86].

Anyway, the representation (3.6.1) has some disadvantages. First of all it includes
the smoothness term, which we need only for numerical solution of the Euler-Lagrange
equation. The most important parts are the constancy assumptions, since they are the
core of any energy functional. With this idea, using the main constancy assumption on

image brightness, we can write down another formula for the row Sum:

widthheight

2
Sum(i) = Z z (Il(uav)_lz(u +aqui)tx,v)j . (365)
z

u=0 v=0

Now let us discuss the technique of the controlling the matching process more
closely. We have two criteria for it, let us call formula (3.6.3) the main criteria and
formula (3.6.4) the secondary criteria. The violation of the main criteria we consider as a
calculation mistake. In this case we try to repeat the last iteration with new parameters.
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The violation of the secondary criteria we consider as an acceptable mistake. Having in
mind the main criteria, we can formulate the concept of the convergence speed:

@ _ (+))
Speed =SMm_ZSumTT i e N. (3.6.6)
J

In case of the convergence speed becomes smaller than a certain threshold, we may
try to play with the parameters again, to find a better vector of minimization. The most
interesting question is about the way how to change these parameters. Particularly,
when we vary such constants like p or 4 we receive another problem so the formula

(3.6.5) will not give comparable Sum"”, but the point here — is to recover the calculation
error in the case of the main criteria violation and to gain the more fast convergence in

the case of Speed,, became too small. Note that, using the fine-to-coarse levels strategy

or warping technique leads to the whole problem changing and use the solution from
the previous problem as initial data for the new one. Approximately the same we
observe with the controlling technique.

The criteria for the stopping the iteration process and the parameters varying
strategy depend on the according algorithms and the implementation. In this thesis we
use a heuristic parameters determination and adaptation block.

3.7 Summary

In this chapter we have discussed important theoretical topics that constitute the
basis for stereo problems in image processing. The most important of them are
mathematical models of cameras and scene illumination, diffusion processes and
gradient filtering theory. Using matrix transformations and mathematical description of
camera, we have derived correspondence equation, which binds any pixel of one
picture of the stereo image with the pixel of another picture through the real 3D point of
the world. Moreover this equation binds the pixel size with the real metric system.

We have discussed the theory of diffusion processes and the theory of illumination
to design and build data terms and smoothness terms for our energy functional. Also
we have marked what kind of results are gained with using different data and
smoothness terms and the ways how to control the solver during computations for fast
error recovery and correcting the way the solution process flows.

In the next chapters we will precede more close to practice, build and discuss
numerical schemes, build the solver, achieve first results, and than step by step improve
them.






Chapter 4

Depth-Map Reconstruction with Two
Cameras

In this chapter we will come from the theory to the practice. Four different methods
of the depth-map reconstruction are waiting to be considered and their advantages and
shortcomings to be discussed. As a powerful tool to anlize the regularization behavior
of different smoothness terms, the concept of an RnB pyramid is presented. Moreover
the techniques, aforementioned in previous chapters, like multi scale technique and the
technique that modifies the data term such that it becomes more robust will be
described in detail. We will also describe which practical case needs a particular
technique or method. Then we come to the numerical schemes — the paragraph, where
we will step by step derive and explain the working numerical schemes for linear and
non linear Euler — Lagrange equations. All the discussions and conclusions in this
chapter are about the two camera case; they are the fundament for multi — view depth-
map reconstruction, which will be considered in the next chapter.

4.1 Depth-driven method vs. disparity-driven
method

For the reconstruction of the depth-map it is possible to use two different
approaches. They are the depth-driven approach and the disparity-driven approach. To
explain the difference between these approaches, let us consider the first equation from
the system (3.1.10) for two cameras:

43
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oAt

u, =u, + ,
z(u;, )

(4.1.1)

. . . JAV S . .
here the function z(u,,v,) is the depth-map and the fraction % is the disparity
z(uy, v,

between two pixels from the different cameras, constituted by the projection of one
world point. By other words, let us suppose that a world point M (x, y,z) projects to the
pixel m,(u,,v,) of the first camera and to the pixel m,(u,,v,) of the second camera.
Accordingly to the system of equations (3.1.10) v, =v, (since the cameras are shifted
among each other only horizontally) and the value of % is the disparity in pixels
z(u,, v,

between u, and u, .

The idea of the disparity-driven approach is to calculate the disparity map or optic
flow field between the cameras and then calculate from it the depth-map, instead of
calculating the depth-map directly. If we denote though z'(u,,v,) the disparity map,

then the equation (4.1.1) will be rewritten as follows:
u, =u, +z'(u,,v,) (4.1.2)
and to achieve the depth-map from the calculated disparity map we will us the formula:

2(u,v) = Z“(MNV) . (4.1.3)

The disparity driven method has some ponderable advantages. First of all, it leads
to the Euler — Lagrange equation which is linear, while the depth driven method leads
to the non-linear equation [BCAB95]. Let us consider the energy functionals and the
corresponding Euler — Lagrange equations. For the simplicity let us use only the grey-
value constancy assumption in the data term. The energy functional for the depth
driven approach:

E@) =] L)~ L+ 22 ) | 4w (V] )dudy (4.1.4)
Q (M,V)

V4
and its Euler — Lagrange equation:

o,At,

z(u,v)

) aqufx ( I (u,v)— 1, (u+ a(uAtx) ,v)J +o- div(‘P'(|VZ|2) : w): 0. (4.1.5)
z

z(u,v

-1, (u+

This Euler — Lagrange equation still has implicitness in function /, and its

derivative, and we can get rid of it, using the techniques of first order Taylor expansion
or linear interpolation described in paragraphs 4.2 and 4.3. But we can already see that
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At .. s . . .
due to the term a”—zx it will be no possibility to build a linear numerical scheme. Now
z

let us write the energy functional for the disparity driven approach:

E(z") = .U(Il (u,v)—1,(u+ z'(u,v),v))2 +¢- ‘~P(|Vz|2)dudv (4.1.6)

and its Euler — Lagrange equation:

Ly e+ 20 ) (1 0,9) — L (e + 2/ (u,).0))+ - din @' (V2] -2 )= 0, (4.17)

oAt
ZZ

here we have got rid of the term and now it is possible to choose a linear

numerical scheme for solving this equation.

Another advantage of the disparity-driven method becomes clear, if we look more
carefully at the smoothness terms of the energy functionals. While theirs data terms are
different, the corresponding smoothness terms are still almost the same. Pay attention
that in case of the depth-driven approach we are smoothing the depth-map, while in the
disparity-driven approach we are smoothing the disparity. Let us consider this

difference in details. At this point to discuss the advantages and shortcomings of the
approaches we will build a simple model — an artificial disparity field and the
corresponding depth-map (figure 4.1).

200w
143m
11lm
0.9 mm
769 mm

Figure 4.1: RnB Pyramid: Left: Disparity domain; Right: Depth domain.

An RnB pyramid is a number of half — overlapping layers with different disparity or
in other words with different depth — distance from an observer. The pyramid
illustrates disparity/depth differences (gradients) between a layer and the background
in the red point row and between consequent layers in the blue point row. Since in stereo
images which are represented as a number of pictures, we deal with the pixels’
displacements, we built the RnB pyramid in disparity domain in such a way, that the
displacement between any two adjacent layers is constant, and then translated it into
the depth domain.
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Now let us consider in plots and tables the differences between red and blue point
rows of the RnB pyramid in depth domain and disparity domain. If we have N layers
L, where i€[l; N] and L, is the background layer, we can define the disparity and

depth values as follows:

2 =i-Ad,, (4.1.8)
7, = bl (4.1.9)
i-Ad,

where Ad, is the shift of layer L, in pixels. Note, we use the constant layers shift:
Ad,=Ad, Viell; N] (Ad=1,, and a,At =10 in figure 4.1).

From formulae (4.1.8) and (4.1.9) we can derive the formula (4.1.3) what proves the
correctness of the RnB pyramid principle. Moreover, using the formula (4.1.3) we can

write down the equation, characterizing the correlation between the gradients on the
RnB pyramid in depth and disparity domains:

P 2
At At (AL
o = - S @110

Now let us return to the RnB pyramid. Since all the points of the red and blue point
rows lie on the corner-edge of the RnB pyramid and the directional derivatives are

equal there, we can write [Vz|" =22+ 22 =222, The gradient in the blue point row we

calculate with the help of the following formulae:

vz =2(z",,~2", ] =2((+1)Ad —iAd ) =2Ad?, (4.1.11)
2 2

Vi =2z, -z ) =g Bl @B | ol (4.1.12)
(z+1)Ad iAd i(i +1)Ad

and the gradient in the red point row we will calculate by means of the next pair of
formulae:

vz =2(z",,~2,F =2(G+1)Ad —Ad) =2(iad ), (4.1.13)
2 . 2
|in|2 _ 2(2[+1 2, )2 _ 2( '(IMAIX _ (luAtX] - 2(%) . (4.1.14)
(i+D)Ad  Ad (i +1)Ad

Now let us illustrate the behavior of the gradient magnitude on the edges of far and
near layers. Using formulae (4.1.11) — (4.1.14) we can build the table 4.1, substituting for
the far column values of gradient magnitude with i=1, and for near column values of
gradient magnitude with i — . With the help of the color we distinguish gradient
magnitudes in the red or blue point rows.
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Table 4.1: Gradient magnitudes on the RnB pyramid.

2 )12
Vz|'/ [vZ] Far Near
2 ¢ |2ad° const 1 const 1
E s
&5
A | 2(ad) const 1 9
2
- & 2% const 2 0
= ‘& i(i+1)Ad
§ o
o Z[%] const 2 4 const >
i+

At table 4.1 we can see that the gradient is constant in the blue point row of the RnB
pyramid in disparity domain and the gradient in the red point row linearly increases
from layer to layer. Indeed, if we look once more at figure 4.1 we can see that the
contrast between layers is constant and the edge between the 16-th layer and first one is
much mire bigger than contrast between second and first layers. In depth domain we
have a different picture. Here the gradient in blue point row not constant but has
decreasing character from far to near layers and the gradient in red point row, as well
as in disparity domain, increases but is bounded. Comparing these results with the
figure 4.1 we make sure that the contrast between consequent layers decreases when
coming from far to near layers and it is almost impossible to distinguish edge between
the 16-th and 15-th layer. And the contrast between a layer and background is very
good distinguished by an unarmed eye, it increases when coming closer to an observer
and the contrast between 16-th and 15-th layer not bigger than four times of contrast
between the second and the first layer.

We would like to compare the values of const: and const: to understand the
difference of the gradient behaviour on far situated objects. For this purpose we will
derive the gradient correlation equation like (4.1.10) from equations (4.1.11), (4.1.12) for
the blue point row:

2 2 2
vz | =2 _aAL ) thz OAd? = thz vz (4.1.15)
ii+DAd ) \iGi+D)Ad i(i+ D)Ad

and from equations (4.1.13), (4.1.14) for the red point row:

i 2 2 2
vz, =g L% | [ _@AL ) pagy o _HAL ) g (4.1.16)
(i+DAd )\ ((+D)Ad (i+1)Ad

For the far layer, i.e. i =1 we achieve the same formula for (4.1.15) and (4.1.16):
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2
2 (a,Af V12
vz, :(WJ vz |7, (4.1.17)
consequently
a,At, Y
const, :(2“&1;) -const, . (4.1.18)

Now it is very important to investigate the smoothness process on red and blue
point rows of the pyramid. Let us put the gradient magnitudes from formulae (4.1.11) —
(4.1.14) in the Charbonnier regularizer (3.5.6) and plot it to show the contribution of the
smoothness term to the energy functional:

1 T T T T T T T 1 ﬁ I
ngr- . g+ -
06l - 0.6 -
= ¥ {const =
04k - 0,4 -
0.2 __,_/——/———’f—/_—: 0,2 "
0 _,——'1—"'_'_'_|__—'_'|_'_'_ 1 1 1 1 0 1 I 1 1 1 1
1] 2 4 & g 10 12 14 15 1] 2 4 & g 10 12 14 15
far pixel fear far pixel fiear

Figure 4.2: Charbonnier penalizer on gradient magnitude (A =0,025): Left: Argument: gradient

magnitudes in the blue point row (blue graph) and the red point row (red graph) of the RnB pyramid in
disparity domain; Right: Argument: gradient magnitudes in the blue point row (blue graph) and the red
point row (red graph) of the RnB pyramid in depth domain.

As we can see from the figure 4.2, the contribution to the energy functional of the
smoothness term in depth domain is much larger than the contribution of the
smoothness term in disparity domain. Moreover, the difference between values of red
and blue graphs in depth domain for 16 pixels layer shift reaches almost the value of 1,
when the same difference in disparity domain less then 0,2. It means, that the average
deviation of the gradient magnitude in depth domain almost 5 times bigger than in
disparity domain. Due to such a big deviation we are not afforded to reduce the
smoothness parameter ¢ too much. Also the plots prove the idea, described by

formulae (4.1.10) and (4.1.17): when an object is far situated, the disparity in its stereo
2 2

ﬁ becomes unbounded large
zZ

and therefore especially at far objects the contribution to the energy functional of the

image z' is pretty small, then the value of the term

smoothness term becomes too large in comparison with the contribution of the data
term. In such a way all the far distant objects will be blurred into the background.
Indeed, looking back to our RnB pyramid from figure 4.1, where we have Ad =1, and
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a,At. =10 and substituting these values into the formula (4.1.18), we calculate that
const, = 25-const;! Anyway we have to have in mind that the nonlinear behavior more

problematic than scale.
To summarize this discussion, let us represent the results of our research of the
smoothness process on the RnB pyramid in table 4.2:

Table 4.2: Smoothness process on edges of the RnB pyramid.

Far near

Edge preservation Edge preservation

Disparity
domain

Overblurring Edge preservation

Depth
domain

and some examples at the figure 4.3:
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Figure 4.3: “Poster” scene: Top Left: The first picture of the scene; Top Centre: Segmented object on the
scene; Top Right: The eighth picture of the scene; Bottom Left: Result achieved with the disparity-driven
method; Bottom Centre: True solution; Bottom Right: Result achieved with the depth-driven method.
(The original scene taken from [WMUO07]).

== near <px
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Figure 4.3 illustrates the practical difference between depth-driven and disparity-
driven approaches. At the bottom left image we can see that edge between the red and
blue segments is preserved (for the color of segments refer to the top centre picture of
the figure 4.1), while at the bottom right picture we observe this edge totally
overblurred. At other hand the figure demonstrates that the nearest object in the
“Poster” scene is not so blurry with the depth-driven method like in result achieved by
the disparity-driven method. So the nearest layer does not look like whole segment. As
a conclusion we can recommend to use the disparity-driven method for the depth-map
reconstruction in further work, as it is the method, which has more advantages.

4.2 First order Taylor expansion

As we have discussed in the third chapter, the most problems in data term we have
due to implicitness of the first term in formula (3.2.1). We have mentioned that there are
several methods to overcome this problem and one of them is the very popular method
of first-order Taylor expansion. To explain how it works, let us consider the Taylor
series.

In mathematics, the Taylor series is a representation of a function as an infinite sum
of terms, calculated from the values of its derivatives at a single point. It may be
regarded as a limit of the Taylor polynomials®. Taylor series are named in honor of
English mathematician Brook Taylor (August 18, 1685 — November 30, 1731).

The Taylor series of a real or complex function f that is infinitely differentiable in a

neighborhood of a real or complex number a, is the power series:

0 (k)
f(X)=f(a)+Z%(x—a)" : (4.2.1)

k=1

The Taylor series need not in general be a convergent series, but often it is. The
limit of a convergent Taylor series need not in general be equal to the function value
f(x), but often it is. If f(x) is equal to its Taylor series in a neighborhood of «, it is
called to be analytic in this neighborhood. If f(x) is equal to its Taylor series
everywhere it is called entire [WWO07].

A Taylor series can be used to calculate the value of an entire function in every
point, if the value of the function, and of all its derivatives, is known at a single point.
Uses of the Taylor series for entire functions include the partial sums of the series can be
used as approximations of the entire function. These approximations are good if
sufficiently many terms are included.

Let us rewrite (4.2.1) in a form, than is more suitable for our problem:

5 The expressions that is constructed from one or more variables and constants, using only the
operations of addition, subtraction, multiplication and constant positive whole number exponents.
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S+ Ax) = f(x>+2f D0 gt (422)

Here we approximate the function f in a point x+ Ax within a neighborhood with

radius Ax. We assume that we deal with analytic function in this neighborhood and the
neighborhood’s radius is small enough to neglect all the terms in the Taylor series
except the first one, i.e. we assume that that the function f is sufficiently smooth and

the value of Ax is sufficiently small. This approach gives us the first-order Taylor
approximation of a function:

f(x+Ax)= f(x)+Ax- f'(x), (4.2.3)
or in two dimensional case:
S(x+Ax,y)=f(x,y)+Ax- f.(x,p). (4.2.4)

In such a way we have come to the formula (3.2.2). Now let us write down the
simplest energy functional, that is used in this paper:

2
E@)=|| ( .y j +¢-|V2| dudv (4.2.5)
and its Euler — Lagrange equation:
a,At a, At
0=-1,,(u,v)—5+ [Il(u,v)—lz(u,v)— Lz [2u(u,v)j+(o-Az. (4.2.6)
z

We got rid of implicitness, but the Euler — Lagrange equation is still non linear. So,
we can find the solution to the equation (4.2.6) as a steady-time state of the following
differential equation:

%:—IZM“N (1 1, ﬁlhjwm, 4.2.7)
Z

here we omit the functions / arguments for simplicity and introduce an artificial time
parameter ¢.

To consider the disparity-driven method with the first-order Taylor
approximation, let us rewrite the energy functional (4.1.6) using the formula (4.2.4) and
Tichonov regularizer in smoothness term:

E(z) = j j (1, v) ~ I, (u,v) = 2' (), ) ) + 9|2 dudy (4.2.8)

and its Euler — Lagrange equation:
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I, (u,v)([1 (u,v)—1,(u,v)-z'(u,v)1,, (u,v))+ p-Az=0. (4.2.9)

Equations like (4.2.7) are solved with help of time-marching numerical schemes and
equations like (4.2.9) being linear, are possible to solve with the help of fast linear
numerical schemes. We will consider this numerical schemes and discretization
techniques in paragraphs 4.5 and 4.6.

The method of the first order Taylor expansion has some ponderable

o,At,

disadvantages. First of all it follows the assumptions that the value (or |z]) is

sufficiently small, which is not obliged to be always true. This limitation leads us to
another problem with implementing the method of coarse levels, which implies big
disparities at the finer levels. This problem is described in detail in paragraph 4.7.

4.3 Linear interpolation of data term

Another approach to get rid of implicitness in data term is the method of linear
interpolation. This method related closer to numerical schemes and deals with the
discrete data. In practice our pictures of a stereo image /,(u,v) are represented as a two-

dimensional arrays, or discrete functions: 7,(u,v):N"xN" > R. By another words,

arguments of these functions in discrete case must be integers greater or equal to zero.
a,At

u tX X

The value

€ Q is rational, hence the value of u+ € Q is rational as well. To

z z
overcome this problem we apply the linear interpolation [Mei02].

The main idea of the method of linear interpolation is to represent the term
a,At
z
have:

X

€ 0 as a sum of two numbers: integer 4eN* and b e R, such that |5 <1. Thus we

I(u 4 Gl ,vj = I(u+A+bv), (4.3.1)

z
using the linear interpolation we have:
Iu+A+b,v)=1—[p) - I+ A,v)+[p|- I(u+ A+ sign(b),v). (4.3.2)

This approach admits to still having implicitness, but it excludes any kind of
o, At

X

limitation on value of and could be considered as a kind of “incremental

z
calculation”. Moreover we proof that the method of linear interpolation is more general,
and hence more useful than the method of first order Taylor expansion.
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Theorem 4.1: if the value of %Al is small enough, then method of linear
z

interpolation is identical to the first order Taylor expansion.

o, At

X

<<1, then, since %2 — 415, we have 4=0 and b=
z z

Proof: if

z

Now we can write:

T(u+ @Al ,V)
z

=l(u+A+b,v)

=(1—|B))- 1(u + A,v) +|B|- 1 (u+ A+ sign(b),v)
=( —|b|) (u,v)+ |b| I (u+sign(b),v)

= I(u,v)+b|- (1(u + sign(b),v) — 1(u,v))

= 1(u,v)+sign(b)-|b|- 1, (u,v)
=I(u,v)+b-1,(u,v)

:](u,v)+a“—At)‘-Iu (u,v).
z

Now let us write the energy functional and then derive its Euler — Lagrange
equation with data term of the Euler — Lagrange equation interpolated with help of the
linear interpolation:

2
E(z)= j j (11 (u,v) - [z(u L &AL VD +¢-| V2| dudv (4.3.3)
z
Q
and its Euler — Lagrange equation:
0=-1,, (u L 2l ,Vj aqutx (11 (u,v) _12(1/1 4 Sy ,VD +-Az. (4.3.4)
z z z

Now we are ready to apply the linear interpolation to the data term of the Euler —
Lagrange equation. Since we calculate the derivatives via finite difference numerical

. a, At . . . .
scheme, we know, that the function /,, (u +M,vj is a piecewise constant function,
z

At
%2l ,vjzlzu(quAer,v) ~1,, (u+A4,v):
z

so we assume that 7,, (u +

a, At
2
zZ

-1,, (u + A, v) (I1 (u,v)—(1- |b|)12 (u + A,v)— |b|12 (u + A+ sign(b),v))

4.3.5)
+¢-Az=0.
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As in (4.2.6) we have got a nonlinear equation. So we will use the time-marching
numerical scheme to solve.

(4.3.6)

To consider the disparity—driven approach with the linear interpolation method, let
us rewrite the energy functional (4.1.6) with Tichonov regularizer in smoothness term:

E(") = [[(1,0,9) = I, (u+ 2'w,),9)) + -V’ dudy 4.37)

and its Euler — Lagrange equation:
L, (u+ 2" ) )T () = I, (u+ 2" (u,v),v))+ @~ Az'= 0. (4.3.8)
Now we define z'(u,v) = A'+b' and apply formula (4.3.2):
L, (A1 ) = (=PI, + A'3v) =B (u+ A'+sign(b),v))+ @-Az'=0.  (4.3.9)

Let us now summarize the last two paragraphs. We have derived four different
Euler-Lagrange equations: (4.2.6), (4.2.9), (4.3.5) and (4.3.9) and we can combine the
data terms of the Euler — Lagrange equations in the following table:

Table 4.3: Data terms of Euler — Lagrange equations.
First-order Taylor

. Linear interpolation
approximation

oAt
ZZ

(I, - (A=b)L, (u+ A)~bL,(u+ A+1))

Depth 3 -1, (u + A)
driven

Disparity

driven LL~1,~21,) L, (ut A1, = (=BT (u+ ) =L, (u+ A1)

Results, according to the table 4.3 are depicted at figure 4.5. The background object
in the scene (red layer in the top centre picture of figure 4.5) has shifted less than 1 pixel
and the nearest object in the scene (cyan layer in the top centre picture of figure 4.5) has
shifted more than 2 pixels. At the left middle and bottom pictures of the figure 4.5 we
observe that the first order Taylor approximation, as it was predicted, can not handle
with big disparities for the depth-driven method as well as for the disparity-driven
method: the cyan layer does not seen at all, and the yellow and magenta layers have
numerous mistakes — outliers values, which are depicted with bright yellow or dark
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blue colours at the figure. The results, achieved with the linear interpolation method
show good performance. The depth driven method is characterized by the overblurred
background as it was described in the first paragraph of this chapter. We can conclude
that the linear interpolation method may deal with much more bigger displacements
than the first-order Taylor approximation. Experiments show that the linear
interpolation method successfully handles displacement till 4 pixels, while the first-
order Taylor approximation can give good results with displacements not bigger than 2
pixels and require more accurate and heavy coarse levels technique than the linear
interpolation method.

- near dpx

Figure 4.4: “Barnl” scene: Top Left: The first picture of the scene; Top Centre: Segmented object on the
scene; Top Right: The eighth picture of the scene; Middle Left: Result achieved with the depth-driven
method and first-order Taylor approximation; Middle Centre: True solution; Middle Right: Result
achieved with the depth-driven method and linear interpolation; Bottom Left: Result achieved with the
disparity-driven method and first-order Taylor approximation; Bottom Centre: True solution; Bottom
Right: Result achieved with the disparity-driven method and linear interpolation. (The original scene is
taken from [WMUO07]).
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4.4 Penalization in the data term

To control outliers in data term we will use a very popular technique of data term
penalization. After we have constructed the data term, using suitable constancy
assumptions, it is possible to make it more robust. Till this moment we considered data
terms that penalize deviations from constancy assumptions in a quadratic way, to
modify it to be more robust we will use non quadratic penalisation strategy which
renders the estimation more robust with respect to violations of the model assumption
like appearing or occluding objects. The main idea of this strategy is to penalize outliers
less severely than in quadratic setting.

For the regularization of data term we will use penalizing functions like (2.3.4), or
particularly saying the same penalizing functions that we already use for smoothness
term: Tichonov penalizer (3.5.3), Charbonnier penalizer (3.5.6) and Perona-Malik
penalizer (3.5.7). The only difference between the penalizing functions of data and

‘“”_7
S

smoothness terms will be the index: “d” for data term and for smoothness term:

W (s*)=+s"+A , 0eld,s}, (4.4.1)

or by another words, different parameter A .

Let us plot in figure 4.5 the graphs of the corresponding penalizing functions. We
know that the quadratic and Charbonnier regularizers are convex in s, what leads to an
opportunity for building simple globally convergent algorithms [AL95]. Apart from
them we also have Perona-Malik regularizer which, as we can see, is not convex, and
using it in data term we can not guarantee well-posedness for the problem of the depth-
map reconstruction. Anyway such penalizers are more robust and result in energy
functionals that have multiple minima [BA96]. Also pay your attention at the range of
the co-domain of the functions plotted in figure 4.5.

10,0065

Fis?)

0

Figure 4.5: Comparison of different penalizing functions: Left: Tichonov (quadratic); Centre: Charbonnier
(total variation) (1 = 0,025); Right: Perona-Malik (balanced forward-backward) (A = 0,025);

We will consider the whole data term as one entity that represents all constancy
assumptions that are imposed on the image data. It means that all assumptions are
robustified jointly — by applying a single robust function to the complete data term.
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Such an approach is called joint robustification. Schematically we can illustrate the
technique of data term regularization in the following formula:

E(z)= .[ J- Y, (z Constancy_assumptionij +o-Y ( |VZ|2 )dudv . (4.4.2)
O i

4.5 Time marching numerical scheme

Now let us build the implicit time marching numerical scheme for our problem.
First of all let us write the energy functional with the data term built on grey-value
constancy assumption and gradient constancy assumption with help of regularization
and the smoothness term built with the help of a regularization function:

O\ (u,v)—1,(u+ @Al V)| +
E2) =[] z |+ W(Vz )dudv (4.5.1)
2 -0 -‘wl (u,v) = VI, (u + 2Bl )
zZ

we decompose the second component of the data term:

A
Vll(u,v)—Vlz(qua“ t",v) =
z
A Y
au X
(Ilu(u,v)j L, (u+ . V) B
)| 1 e B2 )
z
[lu (u7v)_]2u (u + aMAtX ,V)
I vy I, (u+ 2By
o At 2 o At 2
I, (uyv)y—1,,(u+—+ x,v)j +(11v(u,v)—12v(u+ “ x,v)j. (4.5.2)
z z

Using the formula (4.5.2) we can rewrite the energy functional (4.5.1) in the
following form:
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(1 (u,v)—1 (u+ v)j

E(z)=|[¥| (1-6)- ( ) = I, (u+ 2 v)j + |+ W (V" )dudv . (4.5.3)

(1—®)( NURYES IZV(u+ v)j

Now let us apply the first-order Taylor expansion technique and rewrite the energy
functional (4.5.3) omitting the function argument indexing;:

2
@-(11—12—““A’x IZ,J n
z
o, At ?
E(x)= [ (1—@)-(11u—12u— : xzmj + |+ ¥ (V2] dudv . (4.5.4)
Q

2
o At
(1—@)-(11;12; e j

And now we are ready to derive the Euler — Lagrange equation in meaning of the
time marching scheme:

2
A
@-(Il—lz—a”—txlhj 4
z
oz a At ?
A _\P' (1_®)([1u _[Zu _A[hmj +
ot z
o At ?
(1_®)(11v _12\/ _AIZWJ
z
AL At
0.1, % (1 _p, - Sl 12“j+
z2 z
A A
“—5(5 g, ~ %l 12Wj+ + (4.5.5)
z z

At At
a X(IIV_IZV_au xIZvuj
Z z

0 div(‘I"(|Vz|2) : vz)

(1-0)-1

2uu

(1-0)-1

2vu

Now let us discretize the data term of the Euler — Lagrange equation and the
smoothness term of the Euler — Lagrange equation separately, and then combine the
results into the desired numerical scheme. To precede let us first of all introduce some
notations for simplicity. We will replace the long diffusivity function by the short
notation:
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vz, [H=g.,. (4.5.6)

Next, let z will be the next depth-map state, i.e. the state at the next iteration step,

and zis the current state of the depth-map, i.e. the state at the current time. Then the
forward approximation of the time derivative could be written as follows:

O T E (4.5.7)
ot T
where 7 is the time step and indexes i, j denote the current depth-map element, or by
another words the array indexes.

We will start with the data term of the Euler — Lagrange equation discretization.
Here for the simplicity, we designate the whole argument of the diffusivity function in
data term of the Euler — Lagrange equation through one term:

2
a At
porma, =), (1), ~“201,) | +
A 2
a, At
(1-0)- ((lm ) W UV ),,_,j + (4.5.8)

(1—@)-((11),.,, -(1,), —“;—A’”(Izw ),-,./] -

i,j

And now let us write down the discretized data term of the Euler — Lagrange
equation:

Data — termEuler—Lagmnge = gdata (FOrmai,_/) :

a At a At
0-(1..), %{(11 ) - (1), e g >j .

i Zij

o, At o, At (4.5.9)
(1-9©)- (12uu )i,_/‘ —2[(11:4 )j,_/ - (Izu )i,j - (12uu )[,j ] T

i,j

o, At o, At
(1 - ®) ’ (12vu )i,j #((11\/ )i,j - (]2\/ )i,j _%(IZW )i,jJ

i,j

Now let us proceed with the smoothness term of the Euler — Lagrange equation
discretization. For this purpose let us rewrite it in the following form:

2
— ; ' —
Smoothness _termy,, 1 ,oumge =" dzv(T (‘Vzi’j‘ )-Vz, )—

(4.5.10)
_a'div(gi,./ 'VZi,j): _a'(au (gt,j '(Zi,_/)z¢)+av(gt,j '(Zi,j)v))’
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the next step is to discretize the term 0, (gl.,_/ (2 ), ):

Ziy J o Zl} i
au (gi’j '(Zi,j)u ): GM(gH%J #j =
(4.5.11)

8, T8 Ziny; —Zi & +8i, Zij —Ziay
2 Au 2 Au

The term 6V(gi’ (2 j)v) we discretize in the same way. Now we assume that the

grid steps in wand v directions are equal to 1: Au=Av=1; so we can rewrite the
formula (4.5.10):

Smoothness _termy,,, | oange =

8, T8 8, t8i,
%(zm,_/ _Z[,j)_]TU(Zi,_/ _ZH,,')"'
—p- = (4.5.12)

gi,j+1 +gi,j gi,_/ +gi,f*1
) (Zi,j+l _Zi,j) - 5 (Zi,j _Zi,j-l)

) (g[+l,j +8g:,; )Z[+l,j + (gi,_/ +8i, )ZH,_/ + (gi,jH +8:, )Zi,j+1
2 \+(8i; + 8170 — (A8, + 8y T8y + &y 8171,

Of course when we are using the Tichonov diffusivity where g, =1: Vi, j, we get

the standard Laplacian discretization:

Smoothness _termy,,, | orange =
2.0
2

2 (Zm,_/ - 22,‘,_/ +Z T2

$2z,, 42z, 42z, -8z, )= (4.5.13)

i+1,)

- 22[,_/ +Z a ).

Now, using the discrete versions of the data and smoothness terms of the Euler —
Lagrange equation (4.5.6), (4.5.9) and taking all the terms z,; in its smoothness term

from the next time step we can rewrite the discrete version of the equation (4.5.5):
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ij T i
— " =g (Forma, ;)-

a, At a, At
o-(1,), X[ 1), (1), -0, |

i,J

o, At o, At
(1 - ®) ’ (12uu )i,_/‘ %((llu )i,j - (1214 )[,j - . (12uu )i,_/‘ ] + |+

i,j

o, At o, At
(1 - ®) ’ (12vu )i,j #((11\/ )i,j - (12\1 )i,j - M(IZW )i,j ]

ij Zij
0 ((gm, &)y (& & )2y (&g 817 ]
2 \+(giy + 82y — (A8, + iy + 8y 8y + 8171 '
(4.5.14)

Rearranging all the z;; to the left part of the equation (4.5.14) and all the z,; to the

right part we achieve the modified explicit time marching numerical scheme:

— o (Formal.’j)-

o At o At
0- ([Zu )i,j — {(11 )i,_/ - ([2 )i,_/ N f (lzu )i,j ] +

i,j

At At
Z[,_/ +T- (1_®).([2uu )i,j auz - ([lu )i,j _([2u )i,j - a“ - (12uu )i,j + |+
z z

i,J

a,At a,At
100, %2 1), -0, - )|

i Zij

1) ((gm,_/ +8:, )Z[+l,_/ + (gi,_/ + 8, )ZH,_/ +]

2 (@it + 800700 + (20 + €107
Z = o Srm i e Pl . (4.5.15)

QT
1‘*‘7'(4&,]‘ 8, T8, t8&in +gi,j—1)

The analogous semi-implicit time marching numerical scheme for the non linear
Euler — Lagrange equation but for the linear interpolation method could be achieved
from the equation (4.5.15) using the table 4.3. Having in mind (4.3.1) we can write:
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~ 8 duta (Formai,_/) :

a, At
®'(]2u)i+A,_/ ;2 =

i.j

((11 )i,_/ - (1 - |b|) ’ (12 )HA N |b| z+A+blgn(b) j )+

(1 - ®) : (IZuu )'+A j LZAZLX )
z,;,+1- o fo *
(( (1 |b|) 2u i+A4,] |b| 2uu ;+A+sign(b),j )+
o, At '

(1 - ®) ’ (]2vu )HA,_/ ;2

i,j
(( lv i,j (1 |b|) 2v 1+A] |b| 2vu z+A+s:g,n(b)])
[(gm, + 85 )70, (€0, + 8070 J

(81 T 802 1 (g, + 8,4z
2= A e B e . (4.5.16)

1+7'(4gi,j 8, T8, T 8&im +gi,j—l)

In this notation the term Forma, ; will accept the look:

Forma, ; =© - (( zj _(1_|b|)' 1 |b| 1 t+A+wgn(b)/)2 +

2 )i+A v

(1-0)- ((Ilu ), g (1- |b|) 1+A i |b| 12uu i+A+sign(b),j )2 + (4-5-17)
(1-0)- ((Iw ), g (1- |b|) HA i |b| 1 z+A+wgn(b)/ )2'

The discretized smoothness term of the Euler — Lagrange equation was not changed
at all, we only corrected the data term of the Euler — Lagrange equation. The process of
discretizing and building the numerical scheme for the linear interpolation method is
identical to the same process for the first order Taylor expansion.

4.6 SOR numerical scheme

When we are going to discretize a linear differential equation, it is possible for its
numerical scheme use the Successive Over Relaxation technique or SOR scheme, which
speeds up the convergence of the numerical algorithm greatly. We will focus on the use
of an iterative method which lends itself to the opportunity to apply Cartesian
topology. The simplest of iterative techniques is the Jacobi scheme and we will start the
derivation of our numerical scheme according to it. While the Jacobi iteration scheme is
very simple and parallelizable its slow convergent rate however renders it impractical
for any "real world" applications. One way to speed up the convergent rate would be to
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"over predict" the new solution by linear extrapolation. This is the main idea of the
Successive Over Relaxation scheme.

Now let us build a linear numerical scheme for our problem. First of all let us write
the energy functional with the data term built on grey-value constancy assumption and
gradient constancy assumption with help of regularization and the smoothness term
built with the help of a regularization function:

®-|11(u,v)—[2(u +Z',v)|2 +

E(z) = j j ¥ +0- (V2 )dudv;  (4.6.1)

Q (1—@)-|Vll(u,v)—V12(uJrz',v)|2
like before in (4.5.2) we decompose the second component of the data term:

|V11(u,v) -VI,(u+ z',v)|2 =
(1, (u,v) = L, u+z'v)} + (I, (u,v) = L, (u+2',v)). (4.6.2)

Using the formula (4.6.2) we can rewrite the energy functional (4.6.1) in the
following form:

@-([1(u,v)—12(u+z',v))2+
E(z)= j j Pl (1-0)-(1,, (u,v) ~ L, (u+2',)) + |+ (V2] dudv. (4.6.3)
1 1-0)-(1, )~ 1,,(u+2'v))

Now let us apply the first-order Taylor expansion technique and rewrite the energy
functional (4.6.3) omitting the function argument indexing;:

©-(I,-1,-2'1,) +
E(2)=[[®| 1-0)-(1, ~1,, = 2'L,,, ] + |+ W(Vz] dudv. (4.6.4)
? (1_®)(]1v _12\/ _Z'IZVL( )2

Then we are ready to derive the Euler — Lagrange equation:

©-(I,-1,-2'1,, ) +
v (1-0)-(1, -1, —z'1,,) + |-
1-©)-(1,-1,,-2'L,,)
©-1,(,-1,-2'1,,)+
1-0)-1, (1, -1, —2'I,, )+ |+ (4.6.5)
(1-0)-1,,(1, ~1,,~2'1,,)
Q- div(‘{"(|Vz'|2) . Vz): 0.



64 Chapter 4. Depth-Map Reconstruction with Two Cameras

Like in the previous paragraph we will consider the data and smoothness terms of
the Euler — Lagrange equation separately. We will use the same notation (4.5.6) from the
paragraph 4.5 and the same discrete smoothness term of the Euler — Lagrange equation
(4.5.12). Discretizing the data term of the Euler — Lagrange equation we will use the
designation similar to (4.5.8):

Forma', ;= ©- ((11 ),j ( z),-,,- -z (]214 )i,j)2 +
(1—®)-((11u )~ (L), =2, (1), P+ (4.6.6)
1-0)-(1,),, -(1,),, -, (1), F.

In such a way let us write down the discretized data term of the Euler — Lagrange
equation:

Data — termEuler—Lagmnée gdatu (FOVma i, )

®'(12u)i,_/((11)i,j_(]2)1 ;2 ,)+
(1-0)-(1,,,), (1), - (IZH) 2, (L), )+ |
(1_®)'(12vu)i,_/(([1v) _(Izv) lj(lzvu) )

(4.6.7)

Now, using the discrete versions of the data and smoothness terms of the Euler —
Lagrange equation (4.6.7), (4.5.12) we can rewrite the discrete version of the Euler —
Lagrange equation (4.6.5):

0=g,,,(Formd',,)-

o (1), (1), -0), -2, 1), )+
(1=0)-(1,,,),, (1), = (1.,),, =2, (L), )+ |+ (4.6.8)
(1-0©)- ( 2vu ) ((]lv )i,j - (Izv )i,j - Z'i,j (]m ),-,j)

@ &y T8 )7 1,78 + 8 )2 i (& + 8157

2 L (81 +8iy1)2 1,0 —~(848; + &iay + 81y T &1y + 81 j)Z' s ]

Having in mind notation (4.5.7) we will build Jacobi iteration scheme by choosing
all the terms z', ; from the discretized Euler — Lagrange equation except the argument of

8 .ue O function from the next iteration step:
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0= gdam(FOVma )
~(1,),,)-0-2% (1, ), +
{(l ©)-(L,,, ((Ilu)l, (£, )-,j)—(1—®>-z'*i,j(12uu)ij+ +
1-0)-(1,,,),,(1,,),, ~(1,,),, )-(1-©)-2% (1., )},
(8iurs +&1)7 1,481+ 811 )7 ﬁ] B
(& +8)2 jut(g,; +8 ;12

'3
2
2(4 + + + + )z,
2 glj ng/ gl -1,/ gl_[+1 gl/l 4

and rearrange them to the left side of the equation (4.6.8):

@ ’ (]214 ) ( 1 J )+
gdatu (FOl”ma ) (1 ®) ( 2uu) ((]lu (IZM )
(1 ®) ( 2vu) ((Ilv (]2\/
((gl-Fl]+glj)Zl+1]+(glj+gllj)lej
Z'*[/: (gl/+l+glj)zl/+l+(gzj+gl/I)Zl/1 ) (469)
) @ (IZu) +
&aua(Forma', ))-| (1-0)-(L,, )} + [+

(1_®)'( 2vu)i,j

% : (4g[,j +8in,; T8, T8 nt gi,_/—l) +

This time it will not be so easy to derive the analogues Jacobi iteration scheme for
the linear interpolation method because we have to split z' onto 4' and 5' and take 5'
from the next time step, leaving A4' at current time step. We should continue step by
step, beginning from the (4.6.8). According to the method of the linear interpolation we
chose two numbers 4' and b' such that A'+b'=z', and described in paragraph 4.3.

Now, using the table 4.3, and having in mind (4.3.1) we can rewrite the equation (4.6.8):

0= g e (Forma', ;)
®'(12u )i+Aj((I ij - (1_|b'|)' ] i+A,) _|b'| ’ (12 )i+A+w‘gn(b)/)+
(1 - ®) ’ ( 2uu )1+A J (( lu )z . (1 |b |) 1+A J |b| 2u 1+A+sign(b),j )+ + (4610)
(1 - ®) ’ ( 2vu )z+A . (( lv )z J (1 |b |) 2v i+A4,j |b| 2v l+A+blg”(b)] )

) (gm,_/ +8g:,; )z' i+l +(g,',_/ +8i, )z' i) +(gi,_/+l +8:, )z' i, j+l
2+ (g,',_/ + 8 )Z'i,_/fl _(4gi,_/ +8i,; Y8, T8 ju T84 )(A'+D") .
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Then we build Jacobi iteration scheme by choosing all the terms b' from the
discretized Euler — Lagrange equation except the argument of g, ()function from the

next iteration step:

0=g.u (Forma'l.’j )-
01,0, (1), = (1)1, )- 0070, ) +
1=0) (L ) (1), = (1), )- =0 091, .+ |+
1-0)-(1 ), (1), = (1), ) - (1= 0) - 5541, ), 4.6.11)
[(gm, +8, )7, HE& + 81 )7 H (& 807 ]
(8, + 81,7 (48, + 8y + &iny + 8y + 81y A

pb'*
2

'(4g[,j T8 T8, T8 a™ gi,_/fl)'

Deriving the equation (4.6.11) we used the proof of the theorem 4.1. Now let us
rearrange all the b' to the left side of the equation:

0-(1,),.,, (1), ~(L.)., J+
ZaaForma' )| 1=0)-(1,,,),, (1), ~ (1), )+ [+
(1-0)- (12vu )i+A,j ((Ilv )i,j - (Izv )i+A,j )
@ (i + 87 180y + 81 )2 1y (81 + 80)7'
e 2 [+ (8 + 81,7088 + iy + &iny + &ijut + &y )A']

(4.6.12)
2
®'(12u)i+A/ +

8 iata (Forma i,j ) (1 ®) ( 2uu )l+A J Tt

(1 ®) ( vu)1+A/

Q-(4 + + + + )

) 8ij T8, T8im,; T8 T8 1
In this notation the term Forma', ; will accept the look:

1 1 1\ 2
Forma', ; = ®'((I ij _(1_|b|)' I i+4, ] _|b|' 1 i+A+sign(A),j) +
2
1B (L s |+ (4.6.13)

1-0)-((z,),, = (1),
(1_®).(([1v)z]_(1 6D (1 ).y =61 (120) i+A+sign<A>,j)2'

And the new value of the disparity field we can find using the following formula:
7¥'= A'+b*'. (4.6.14)

Pay your attention that the value of 5*' is not obliged to satisfy the criteria: [p*{<1.
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To come now to the SOR numerical scheme we make the following steps:
1. Make initial guess for z',; at all interior points (7, ) .

Define a scalar w, (0<w, <2).
Apply equation (4.6.9) or (4.6.12) to all interior points (i, j) and call it 2.

T \
¥ =w, 2+ (1-w,)z', .

AR o

Stop if prescribed convergence threshold is reached, otherwise continue
on next step.

6. z',=z%,.

7. Go to Step 2.

Note in the above that setting w, =1 recovers the Jacobi scheme while w, <1
underrelaxes the solution. Ideally, the choice of w, would be such that it provides the
optimal rate of convergence and is not restricted to a fixed constant. As a matter of fact,
an effective choice of w,, known as the Chebyshev acceleration, is defined as
[WMWO07]:

0 for n=0;
2
or n=1;
2-p’ J
w o= 4.6.15
" Lz for n=2; ( )
4-pw
4
———— for n=g>2
4—pw,

Note that the numerical scheme (4.6.12), (4.6.13) with A4'=0 and b'=z' becomes
identical to the numerical scheme (4.6.9), (4.6.6). The same we observe with the time-

marching numerical scheme: the scheme (4.5.16), (4.6.17) with 4=0 and b=z turns into
the scheme (4.5.15), (4.5.8).

4.7 Coarse-to-fine levels technique

The coarse-to-fine strategy follows two main aims. The firs aim is to solve the
problem of the multiple minima in the energy functional and the problem of avoidance
of local minima during the iteration process. And the second aim is to tackle the
problem of large displacements. First we shell tell how to build the coarse instances of a
picture and discuss the strategies of implementation and after that we shell consider the
aims of the coarse-to-fine levels technique in detail.

For the purpose of the implementation technique the literature offers us two
different strategies: the scale-space focusing method that considers the problem at different
smoothness scales, keeping the picture’s resolution unchanged; and the multiresolution
technique that considers the problem at different resolution levels [MP98]. In this paper
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we will use the multiresolution technique since it is much more efficient from the
computational point of view. The only lack of this technique that we should take care
about aliasing problem during downscaling a picture. But this lack could be easily
eliminated with help of the bilinear interpolation.

coarge lewel

width width

Figure 4.6: Multiresolution coarse levels pyramids: Left: 2D example; Right: Comparison of the
arithmetic pyramid (red) and the geometric pyramid (blue).

At the figure 4.6 we can see an example of a coarse levels pyramid, built from a
single image and its downscaled instances. At the top of this pyramid the coarsest level
is situated and at the bottom — the fine level, the original picture. If we have N coarse
levels, then the fine level will be the first coarse level and the coarsest one will be the
N -th coarse level. The depth-map reconstruction process becomes with this technique
an iteration process: we reconstruct a depth-map on a coarse level image and then use
this reconstructed depth-map as initial map for the next coarse level. As initial map for
the coarsest level we take a plane which has constant depth values for all the objects in
scene, which is better satisfies the Euler — Lagrange equation. This plane could be
chosen by the simple looking though the suitable depth values.

When we have the original picture, to build the pyramid, illustrated in figure 4.6, it
is enough to choose the number of coarse levels and the dimensions of the picture in the
coarsest level. It is very important to get the first depth-map from the coarsest level,
because it will be a fundament for all the following computations. That’s why the best
choice of the dimensions of picture at the coarsest level is such choice where the largest
displacement in optic flow will be sufficiently small.

Let the width of the original picture will be designated through width, and the
width of the picture at the coarsest level — width, . Then the resolution of the picture at

coarse level i could be found with the help of the following formulae:

width, — width,,

N-1
height, — height

N -1

width, = width, — (i —1)

(4.7.1)

height, = height, — (i —1)
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As we have mentioned at the very coarse levels we build the fundament for all the
subsequent calculations. Another approach for calculating the picture dimensions on a
coarse level, which improves our fundament, can be expressed in the following two
formulae for picture dimensions:

9

widh, = V19,

! (4.7.2)
height, = M.
i

This approach guaranties that the picture’s resolution at top layers of the pyramid
will increase slowly, which consequently allows us to gain better results at the
beginning of iteration coarse-to-fine process. And at the bottom layers of the pyramid
we have large resolution increase, what compensates the small speed at the beginning.
The coarse levels pyramid, built by the rule of formulae (4.7.1) we will call arithmetic
pyramid and the coarse levels pyramid, built with help of formulae (4.7.2) — geometric
pyramid (figure 4.6, right picture).

The number of layers N should be chosen in such a way, that the width increment
be smaller or equal to the width of the picture at the coarsest level. It will guarantee that
the displacement from coarse level to coarse level will not increase more than in two
pixels.

width, — width
N-1

< width,,, (4.7.3)

or in other notation N should satisfy the criteria:

S width, .
width,,

(4.7.4)

The coarse-to-fine level technique fights the problem of the variational method
getting stuck in local minima. As we know, the main idea of variational methods is to
find unknown function which minimizes energy functional. Since as usual an the
energy functional is not convex and may have multiple minima but only one global
minimum, the initialization decides to which minimum the iteration process converges.
And as usual it is a local minimum, not the desired global one. Using coarse-to-fine
levels strategy makes the local minima with sufficiently small spatial extent vanish at
coarser scales and can thus be avoided. How it works we can observe at figure 4.7.

When we have large displacements (more than 4 pixels) in a stereo image, none of
the methods described in this chapter could handle with them, starting from a constant
depth-map as initial data. The coarse-to-file levels technique starts with the variational
process on a coarse instance of the original picture, where the displacement much
smaller (less then 4 pixels). Coming from a coarser level to a finer level, we have the
initial depth-map, calculated from the previous step, and thus we just step by step
increase the displacement and recalculate the depth-map with better accuracy. As we
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know the linear interpolation method precedes any large displacement, but the first
order Taylor expansion method — does not. In order to use the technique of coarse-to-
fine levels with the method of first order Taylor expansion we ought to use moreover
the warping methods.

1 T o
f\/l//\f\@

Figure 4.7: Minimization using coarse-to-file levels strategy (blue) and without (red) to the global
minimum (green): Left: Global minimum found; Right: Useful local minimum found.

Warping denotes the distortion of the image sequence which is required for the
compensation for the already computed motion. So far this technique has only been
justified on an algorithmic basis: In general, it was argued that it makes sense to embed
optic flow approaches for small displacements into a coarse-to-fine framework, since
large displacements become smaller at coarser levels and thus allow for an accurate
estimation with linearized model assumptions. This, of course, is true. However, as we
have seen, this warping strategy can also be derived as hierarchical fixed point iteration
for minimising the energy functional of a variational approach for large displacements,
i.e. for the energy functional based on constancy assumptions without linearization.
This in turn, provides a theoretical justification of the warping technique [BBPWO04].

4.8 Summary

In this chapter we have considered four methods for the depth-map reconstruction:
the depth-driven method, the disparity-driven method, the method of the first order
Taylor expansion and the method of linear interpolation. We discussed the theoretical
properties of these methods and proved them on certain experiments. The disparity-
driven method gives better results then the depth-driven: it leads to a simpler and faster
converging numerical scheme and preserves discontinuities at far-situated objects. The
linear interpolation method is an extension of the first order Taylor expansion method
and can deal with more then twice bigger displacements than its “small brother”.
Moreover the linear interpolation method does not require awkward warping methods.
Thus in future work of extending our model to multiple cameras (more than 2), we will
use the disparity-driven method with the linear interpolation method for linearization,
coarse-to-fine levels technique to avoid local minima and handle large displacements.









Chapter 5

Multi — View Depth-Map
Reconstruction

This chapter extends all the theory for two cameras to the case of multiple cameras.
We discuss the multi — view model and then in the second section we derive a
numerical scheme for it. Thereby we consider only the method of linear interpolation
for the disparity approach as this method gives the most reliable results.

5.1 Multiple data terms

Till this moment we have being considering the depth-map reconstructions
methods which are based on information from only two cameras. By other words,
having any two pictures from different cameras, we can build a data term for an energy
functional. In the case of N cameras, choosing any two of them, it is possible to build
(N —1)! different data terms. The main idea of the extension of our model for 2 cameras
to the model for N cameras is to sum all the possible data terms together and thus
constitute one monolith data term. As illustration, let us rewrite the energy functional
(2.2.8) for case of multiple cameras:

E(z) = Hf ﬁ\[i W, v) ~ 1, v )| + 9|V dudv. (5.1.1)

Q i=l j=i+l

In this paper we make some simplifications. First of all we do not consider all the
(N -1)! possibilities. Instead of that we chose from N cameras one base camera and

73
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consider all the possible pairs of cameras with the base one. It will give us only (N -1)
different data terms, what will reduce computational efforts greatly.

Another simplification is that all the cameras are equidistantly situated at one
horizontal line and we deal with odd number of cameras, i.e. N=2n+1. So we can
chose as the base camera the centre one with index n+1. Using the formula (3.1.10) we
can rewrite the energy functional (5.1.1):

oAt

2
I (uv)—1, (u—(n+1-k) V)| +

b3

Q k=1

2
L ||V dudv . (5.1.2)
o,At,

]n+l (u’v)_12n+2—k (u +(7’l +1_k) ’V)

Here we start summing the data terms from the outer cameras and finish with the
centre cameras (figure 5.1).

Figure 5.1: Multi — view cameras’ position example.

At the figure 5.1 we observe the case of n=2: we have two left, two right and one
centre camera. According to the formula (5.1.2), first we consider the disparity between
the 2-ns, 4-th and centre cameras and then between 1-st, 5-th and centre cameras, where
the disparity is doubled.

5.2 Numerical scheme

The formulae in this paragraph will we very long and to save some paper we
introduce the following notation:
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ol
Oueli' = a’:;’gv) , arg e {u,v}. (5.2.1)
Let us start with the energy functional for the disparity-driven approach:
]Z_H _111:—(}1-%—1—1{)2 2 +
; ' Iu | _[;H(;Jr};k)z 2
E@)=[[2%, e (VA ydudv; (5.2.2)
Q k=1 ‘v[;tﬂ _ VIZf(nJrlfk)z +
(1-0)- I
‘Vlnﬂ —V,5
as usual we open the gradient notation and receive the following expression:
—(n+l-k)z 2
I, —1I; =02\
Hntlh)z|?
L= IszEzf}c Y
. a [u = a 1]1:—(}1+1—k)z 2 +
E(z2) = j j Y la-0)- " " |+ o (V2 duay. (5.2.3)
Q = au fl1t+1 - aulgf;(r;j;k)z
a [u . _a 1]1:—(n+17k)z 2 +
a=eyf =
8V1:+1 - av]grﬁz—k ’
According to the variational method we derive the Euler — Lagrange equation:
@ ' _ (n + 1 _k) . au];:—(nﬂ—k)z( ZH _ I;:—(n+l—k)z)+ .
(n+1=k) 0,135 (1~ 137
n —(n+ 1 _ k . a [lt*(f’l‘*’l*k)z a Iu _ a [lt*(f’l‘*’l*k)z +
Zg(FOI"mak) (1_®) ( ) uu” k L ( u” n+l uk . ) +
(n+1=k)-0,, 070,11 - 0,125 (5.2.4)

+o- div(‘P'(|Vz|2) : vz): 0.

Here we have denoted:

—(n+1-k)-0, 1"
(1 - ®) ' ( (n ) Wu+fn+1—k)z (
(n+1-k)-0,15,5 (8

v on+l

u u+(n+l-k)z
[ - a v12n—k )

v n+l

Iu _ avl;:—(nﬂ—k)z )+J
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R (A e A e B
Forma, = (1—®)-(\6u1 I el +\au1;g1 — 0, L 2j+ : (5.2.5)
(1-©)- ( 0,11, 0,11 [ o, 12, ~ 0,55 2)

To apply the method of linear interpolation we chose two set numbers 4, e N",
b, € R, Yk e[l;n], such that |bk| <l and (n+1-k)z= A4, +b,. In such a manner we can

also express the disparity field:

z = Ak——’_bk . (5.2.6)

n+l—k’

now let us rewrite the equation (5.2.4):

C—(=b ) b I )+
k)" k k™ k +

(—(nﬂ—k)-aul;:/‘k (12,
(n+l-k)-0,1 Z’If{zﬁ( wa — (=B 5 —b 1 Z,ffzkfﬁ)
n —(n+1=k)-0 IM*A;( oI —(1=b.)o Iu—Ak —bd [u—Ak—l n
zg(Formak) (1—6))-[ ( ) Wmi ( l;"+1 (-5, z;+1; ko uk+A+1) n
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+2. (gm,_/ +8:; )Zi+1,j +(gi,_/ +g[71,j)Z[71,_/ +(gi,j+l +8:; )Z,-,_/H o
2 +<gi,/‘ +gi,_/71)zi,_/fl _(4gi,_/ T8, T8 t8ijn +gi,_/71)zi,_/ ’
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g(Forma,)-
o. (— (n+1-k)- 0,11 (1", — 1'% +b, (1~ — ngkl))+J )
(n+1-k) 0,15 12, — It b (1™ — 1)
2| ey [OH1R 0L (0,1, =0, 011 +b, (8,11 —0,I ™))+ )
k=1
(n+1-k) 0, 15 (0,12, 0,157 —b, (0,154 ~0,157) 65.28)
()[R (0,10, —0,1% +b, (3,1 -0, 1))+
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(g,-+1,j +gi,j)zi+1,j +(gi,j +gi—1,j)Zi—1,j +(gi,j+1 +gi,j)zi,j+1
=0.

A, +b,
n+l-o

+_.
2 +(g,-,j +g,-,j_1)Z,-,j_1 _(4gi,j + 8 T8im; T8&ijn +gi,j—l)

According to the (5.2.6) it is possible to have n different expressions for the
disparity field. So in the formula (5.2.8) let o be any of the values from [1;7].
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At this point we should agree to approximate all left cameras’

ol (u,v) for
ou

Vk €[l;n+1) via backward difference scheme and all right and the centre cameras’

oA w.v) for Vk € [n+1;2n+1] via forward difference scheme. Thus we can write:
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S g(Formay )| (1-©
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—Zg(Formak)-bk

k=1
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__¢h
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A
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Let us introduce further notations:

Please, pay attention that g.=g,+g,+g,+g,. Now let us rewrite the

(5.2.9):

8 =8in,; T8,
& =8i;t8u,
8, =818,
8:=8i;t8&i s

8 =8in,; T8, T8&ijmT8&ia +4gi,_/ .

0

n+l-o

(5.2.9)

(5.2.10)

equation
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+£ + + + - Ak
n 8,2, T&1Zim,; T 8uZijn T8aZija gcn+1—k.

The equation (5.2.11) is linear. It means that will be fulfilled with any fixed k. Thus
we can get rid of the sum on k in this equation and achieve n different equations for
different k. Than we resolve the equation about 5:

@_( o, 1 (12, _,Z-Ak);}

0,150 (1, — 15,

—a,, I (0,10, 0,11 )+
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I
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C
(0,154, (5.2.12)

2n+2—-k
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for Vk €[1;n].
Using the formulae (5.2.12) and (5.2.6) let us write the formula for the disparity
field from the next time step:

o [— o, 1y 11 )+j .
0,1k (12, ~ 1)

_auullgiAk (aulfl;ﬂ _aullikAk )+
g(Forma,)-(n+1-k) (1-0)- e . e +
a [2n+2kfk (a [ - au [2n+2k—k )

uu u” n+l

(1-0): (_ Ouli 015,017 )+j
amlzmzk% (a L., - av12n+2k—k )

v n+l

+£ + + + - Ak
* 4, o 8rZiv,; T 81Zim,; T 8uZijn T 8a%ij gcn+1—k

TS O+ ’
e " +

{(@I;‘:f;k y J
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(0,104, F (5.2.13)

u” 2n+2—-k

g(Forma,)-(n+1-k)*| (1-©)-

(1-0)-

for Vk €[1;n].
Where the notation (5.2.5) in terms of linear interpolation approach reads:

2
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2
u o _ utdy u+A,+1
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Forma, =| (1-0©)- (5.2.14)

2
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o1", —(1-b)o 1" —bo, 1" +

v n+l
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+ 2
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v on+l

With the help of formulae (5.2.13), (5.2.14) and (5.2.10) we can calculate » different
disparity fields, which are the partial solutions for the certain set of cameras (see figure
5.1) To achieve the general solution disparity field, which corresponds to all the defined
cameras and provide the interaction between the partial disparity fields, we sum up
weighted values of them together:
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Z(u,v)= 1, -z,(u,v), where Y1, =1; (5.2.15)
k=1 k=1

here Z(u,v) denotes the general solution and z,(u,v) denote partial solutions. In the

experiments, we always use constant weighted coefficients ¢, = % , Vk e[l;n].

5.3 Summary

We have constructed the multi — view mathematical model for the depth-map
reconstruction and derived a linear numerical scheme for it. We used the linear
interpolation method for the disparity driven approach. Numerical schemes for the first
order Taylor expansion method and the depth driven approach could by achieved
analogously, if we apply the concept (5.1.1) to the sections 4.5 and 4.6.

The next chapter illustrates the performance and reliabilities of all the methods,
described and offered in this thesis.









Chapter 6

Experimental Results

In this chapter we will present experimental results that illustrate the theory from
the previous chapters. First, we will shortly discuss the error measures and the
visualization techniques for the computed depth-map solution. Then, we will give a
short description of the used test sequences and the actual program implementation.

In Chapter 2 we presented methods for depth-map computation, namely
variational methods. These methods are based on the minimization of an energy
functional, composed of a data and a smoothness terms. In Chapter 3 we developed
suitable constancy assumptions for the data term and smoothness assumptions for the
smoothness term and invented methods to control the matching process on run. In
Chapter 4 we discussed depth-driven and disparity driven approaches and proposed to
use linear interpolation instead of the first order Taylor expansion within the Euler —
Lagrange equation. Moreover, we described the coarse-to-fine levels technique and the
warping technique, and explained how to achieve more reliable results without them.
The second, the third and the fourth parts of this chapter lead to experimental results
that illustrate the theory from the aforementioned chapters. The conclusion to the thesis
is given in the fifth section of this chapter.

6.1 Experimental setup

Before presenting the actual experiments and results, let us briefly discuss how we
are going to assess the errors, the way we are going to visualize the solutions and the
test sequences we have used in our experiments.
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6.1.1 Test data sets

The main goal of this thesis is the computation of the depth-map for stereo images.
As this is a relatively young research field, there are not that many suitable test data sets
available. However, there are several data sets, that are well-known and there is a
ground truth computed for them. In this section we give a brief introduction to the test
data sets that we have chosen to use for our experiments.

It this thesis we use the stereo data sets from Middlebury University [WMBO07].
These data sets include a stereo image, represented as at the least 2 photos made from
different positions at the same moment of time, a true solution disparity map and also
the most of data sets are supplied with an occlusion pixels map. The resolution of these
stereo images is approximately 450 x 375 pixels and the objects” displacement in these
pictures does not exceed 22 pixels, i.e. lies in range of [0; 22). The true solution disparity
map represents the pixels” displacement field scaled by a certain scale factor, therefore it
is an 8-bit grayscale picture with pixel values lying in range of [0; 255]. The occlusion
pixels map is a 2-bit black-and-white picture, where black pixels represent occluded
regions in the depth-map, and white pixels represent position of reliable data in the

corresponding ground truth map (figure 6.1).

Figure 6.1: “Tsukuba” test data set: Left: The left frame of scene; Centre: Ground truth disparity map;
Right: Occlusion pixels’ map.

Among with the “Tsukuba” data set we use 6 more data sets, depicted in figure 6.2.
We will present the experimental results in the same order which the thesis was
written: we will start with comparing results achieved by the depth-driven and
disparity-driven methods. For this purpose we take “Moebius” and “Doll” scenes. As
we can see at figure 6.2, these scenes have numerous objects, and a major part of them
are far situated near to the background. Evaluating the distances for such objects is the
weak side of the depth-driven method and at the same time it is the strong side of the
disparity-driven method. Therefore these two scenes are the best choice to illustrate the
difference of the methods.

After that we will proceed with comparing the method of the first order Taylor
expansion and the method of linear interpolation. Here we will use the “Art” and
“Flowerpots” scenes. The “Art” scene includes different size objects in the middle
range and thin brushes in the foreground. And the “Flowerpots” scene consists of
massive objects at the foreground. It is very interesting to compare the reliability of the
methods on thin and massive objects with big displacements.
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us” scene; Top Centre: “Doll” scene; Top Right: “Art” scene;
Bottom Left: “Flowerpots” scene; Bottom Centre: “Teddy” scene; Bottom Right: “Cones” scene.

At the end we come to the experiments with the multi — view model on “Tsuluba”,
“Teddy” and “Cones” data sets. They include up to 5 pictures and the efficiency of
other methods for the depth-map reconstruction for these scenes is available at
[WMBO07]. Talking about efficiency of a method, let us proceed to the next subsection.

6.1.2 Error estimation

As we are about to perform some experiments we need a way to measure how
good or bad they are. As mentioned before, the depth-map is an array of scalar values.
For every pixel we have a distance value from an observer to an object in scene. For any
depth value in a pixel we have one-to-one accordance with the disparity of that pixel
between pictures of a stereo image.

For our experiments we use data sets supplied with ground truth disparity maps.
Having the ideal solution available, we can compare our results with it. Our solution is
also a scalar array which represents either depth-map or disparity map, so we need a
way to compare two disparity maps. Here we introduce the notion of the bad pixel. Let
the solution disparity map will be denoted as z(u,v) and the ground truth disparity
map as d(u,v), then the bad pixel is the pixel for which the following inequality is not
true:

|d(u,v)—z(u,v)| <5, (6.1.1)

where & is a small threshold.
As the criteria of error estimation we take the percentage of the bad pixels in the
solution image. During this estimation we do not consider the occluded pixels.
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6.1.3 Results visualization

We have already presented an error measurement technique for estimating our
solution. Of course, this is the most precise way to measure the quality of the solution.
Here follow some visualization techniques we can use.

Since human eye can distinguish only 40 grayscales, and 2,000,000 colors we
represent the scaled disparity and depth maps, which are in fact 8-bit grayscale images,
colored with the help of an “ice-fire” palette. We will always add to the color-coded
images the palette bar in order to let the reader estimate the disparity or depth in
figures.

For more clearness we will also visualize the distribution of bad pixels, which are
calculated according to the formula (6.1.1). For this purpose we will draw them with the
red color on a grayscale solution image. Black color will denote occluded regions, which
are not used during the error estimation.

6.1.4 Implementation details

After we have presented the test sequences that we are going to use for our
experiments, we should also present the current implementation used for computing
the reported results.

The test program has been written in two instances. The first instance is written in
GNU C++ for Linux SuSE 10.0 and the second one in Microsoft C# for Microsoft
Windows XP SP2. Both instances are based on routines that perform the depth-driven
and disparity-driven methods with first order Taylor expansion and linear interpolation
approaches. The program is also equipped with routines that solve a linear/non-linear
system of equations, using the SOR method in case of linear system of equations. Also,
the coarse-to-fine technique is applied with maximum 16 levels. In case of using the first
order Taylor expansion, the coarse-to-fine technique is supplied also with the warping
technique.

All of the above mentioned routines were self-written and optimized for speed. The
constants and parameters that were used by these routines will be presented in tables,
since they are different for different methods. Except for the parameter ®, which is
always equal to the value 0,85.

Around the above mentioned functionality was build a new one based on theory
from the paragraph 3.6, that allows to get rid of coarse-to-fine levels technique, warping
technique, speed up the convergence of an algorithm, have on run error recovery and
make the solver human- and outer parameters— independent as much as possible.

The test program has a user-friendly interface, which allows the user to watch the
automatic parameters optimization and the solution evolution during iterations. Also
the interface allows manually to specify the parameters of the methods in the course of
the program execution and to monitor the performance of the methods with respect to
the error estimation.
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6.2 Depth vs. disparity

In this section we make experiments on the “Dolls” and “Moebius” scenes. Each
stereo image consist of two bitmap pictures with resolution 463 x 370 pixels. In the
experiment we used geometric levels pyramid with 8 coarse levels and the coarsest
level resolution about 57 x 46 pixels. The displacement of objects in the scene varies
between 6 and 21 pixels, so the maximal displacement on the coarsest level does not
exceed 3 pixels. The scale factor here is equal to 12. We use a linear interpolation
method in these experiments that easily handles 4 pixels displacements.

6.2.1 Error estimation

We start with the “Doll” scene. Here we use the parameters, shown in the table 6.1:

Table 6.1: “Doll” scene: setup parameters.
Depth-driven Disparity-driven
approach approach

As we can see, with the depth-driven method we ought to use a very small time
step 7 in that time, while the linear numerical scheme (4.6.12) for the disparity-driven
method does not require this time step at all. We shell discuss the speed of convergence
of these methods in the next section of this paragraph.

At the figure 6.3 we illustrate the results of the first experiment — difference
between the depth-driven and the disparity-driven method. As we can see from the
table 6.1 we tried to create almost the same conditions for the experiment. The solution
disparity map look similar, especially the foreground objects on them (Figure 6.3
middle right and bottom right pictures). But we can clearly see that the background of
the solution image of the depth-driven approach is overblurred, while at the solution
image of the disparity-driven method we can neatly distinguish the dolls” heads.

Now let us compare the middle left and the bottom left pictures of the figure 6.3.
The distribution of the bad pixels again is very similar at the foreground — the red areas
in the centre and bottom of the pictures somewhere larger, somewhere smaller, but look
similar. And in the background, where the depth-driven method gives overblurred
results — at the top of the middle left picture of the figure 6.3 we observe a large red area
— the area where the depth-driven method failed to determine the correct depth. Total
amount of bad pixels in the result image of the depth-driven method is near 5 times
bigger than in the result image of the disparity-driven method.
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Figure 6.3: Experiment I: “Doll” scene: Top Left: The middle frame of the scene; Top Right: Ground truth
disparity map; Middle Left: Distribution of the bad pixels in the solution achieved by the depth-driven
method (§=0,75); Middle Right: Depth-driven solution disparity map; Bottom Left: Distribution of the

bad pixels in the solution achieved by the disparity-driven method (§ =0,75); Bottom Right: Disparity-

driven solution disparity map.

At the figure 6.3 we have presented the distribution maps of the bad pixels in the
solution images achieved by the investigated methods for the threshold value §=0,75.

The percentage of bad pixels for different ¢ is presented in the table 6.2.
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Table 6.2: “Doll” scene: percentage of bad pixels for different J .
Depth-driven Disparity-driven
approach approach

24,58 %

18,67 % 3,91 %
13,29 % 2,37 %
7,51 % 1,23 %
3,46 % 0,7 %

At the table 6.2 we can see that the percentage of bad pixels tends to zero, but
everywhere the mistake of the depth-driven method approximately 5 times larger than
the mistake of the disparity-driven method.

For the second experiment, we took the “Moebius” scene with almost the same
parameters like before, which are shown in the table 6.3:

Table 6.3: “Moebius” scene: setup parameters.
Depth-driven Disparity-driven
approach approach

At the figure 6.4 we illustrate the results of the second experiment — difference
between the depth-driven and the disparity-driven methods on the “Moebius” scene.
As it was expected, the results give us the same picture: for the near and reasonably far
objects, the methods give very similar results, but for the far distant objects, the depth-
driven does not able to estimate the distance to the objects. This phenomenon was
described in section 4.1.

At the figure 6.4 we have presented the distribution maps of the bad pixels in the
solution images achieved by the investigated methods for the threshold value §=0,75.

The percentage of bad pixels for different § is presented in the table 6.4.

Table 6.4: “Moebius” scene: percentage of bad pixels for differento .
Depth-driven Disparity-driven

approach approach
23,11 %

19,64 % 9,6 %
17,43 % 7,55 %
7,98 % 4,54 %

2,66 % 1,37 %
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Figure 6.4: Experiment II: “Moebius” scene: Top Left: The middle frame of the scene; Top Right: Groun
truth disparity map; Middle Left: Distribution of the bad pixels in the solution achieved by the depth-
driven method (6 =0,75); Middle Right: Depth-driven solution disparity map; Bottom Left: Distribution

of the bad pixels in the solution achieved by the disparity-driven method (§=0,75); Bottom Right:

Disparity-driven solution disparity map.

Now let us proceed with the discussion how fast these methods are. In order to do
that, we will compare the number of iterations and how much time one iteration require
for both methods in the following section.
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6.2.2 Estimation of the convergence speed

To estimate the speed of convergence of the algorithms for the depth-driven and
disparity-driven method we plot the graphs which illustrate the percentage of bad
pixels depend on the iteration number. Here we took the finest level with the same
initial data and 6 thousand iterations.
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Figure 6.5: Experiment III: Convergence speed: red graph — the depth-driven method; blue graph —
disparity-driven method: Left: “Dolls” scene for § = 0,75; Right: “Moebius” scene for §=0,75.

At the figure 6.5 we can see that for the disparity-driven method less than 50
iterations are to reach the limit which the depth-driven method reaches in 6000
iterations. In general the blue graph is more tended to the ordinate axis, while the red
one is more smooth and steady. It shows that the speed of convergence of the linear
disparity-driven problem is faster than the speed of convergence of the non-linear
depth-driven problem. Moreover, the straight-forward implementation of the algorithm
shows that the one iteration of the non-linear system of equations takes more time that
one iteration of the linear system of equations.

6.3 First order Taylor expansion vs. linear
interpolation

In this section we make experiments on the “Art” and “Flowerpots” scenes. Each
stereo image consists of two bitmap pictures. The stereo image of “Art” scene has
resolution 463 x 370 pixels and the stereo image if “Flowerpots” scene has resolution
437 x 370 pixels. In the experiment we used arithmetic levels pyramid with 16 coarse
levels and the coarsest level resolution about 29 x 23 pixels. The displacement of objects
in the scene varies between 7 and 21 pixels, so the maximal displacement on the
coarsest level does not exceed 1,5 pixels. The scale factor here is equal to 12. We ought
to use so much coarse levels and so small resolution of the coarsest level, because as we
have described in section 4.2 the method of first order Taylor expansion is not able to
process big displacements and, moreover, should involve the warping technique.
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6.3.1 Error estimation

We start with the “Art” scene. Here we use the parameters, shown in the table 6.5:

Table 6.5: “Art” scene: setup parameters.

First order Taylor Linear

expansion interpolation
15 1
5x10? 3x10?
16 8
0,3 0,3
2,5x10° 2,5x10°

Since the methods in some extend are very similar — the method of linear
interpolation is the general case of the method of first order Taylor expansion, as it was
proven in section 4.3, we can use almost the same setup parameters for both methods,
except the number of coarse levels. The method of linear interpolation in contrast to the
first order Taylor expansion can handle few times bigger displacements and without
warping, so here we use the two times smaller number of the coarse levels.

At the figure 6.6 we can se that both methods gives almost the same results, except
that, the method of first order Taylor expansion gives more artefacts at the near situated
objects and more outliers overall the solution. This is resulting from the inaccuracy of
the warping technique and impossibility of the first order expansion method to handle
large displacements at the finest level.

At the figure 6.6 we have presented the distribution maps of the bad pixels in the
solution images achieved by the investigated methods for the threshold value § =1. The
percentage of the bad pixel for different ¢ is presented in the table 6.6:

Table 6.6: “Art” scene: percentage of bad pixels for different o .
First order Taylor Linear
expansion interpolation

19,88 % 18,66 %
16,05 % 13,98 %
14,09 % 11,58 %
11,55 % 9,44 %
10,01 % 7,96 %

The errors are very similar and do not differ from each other more than 1 % — 2 %
percents. But truly speaking all the values in the table 6.6 are smaller for the linear
interpolation method than the corresponding values for first order Taylor expansion.
We can conclude that on the “Art” scene the linear interpolation method gave better
results, and appeared to be faster, since it requires less number of coarse levels.

¢ Abbreviation from “coarse levels” (CL), i.e. number of coarse levels.



6.3 First order Taylor expansion vs. linear interpolation 93

Figure 6.6: Experiment IV: “Art” scene: Top Left: The middle frame of the scene; Top Right: Ground
truth disparity map; Middle Left: Distribution of the bad pixels in the solution achieved by the first order
Taylor expansion (5 =1); Middle Right: First order Taylor expansion solution disparity map; Bottom
Left: Distribution of the bad pixels in the solution achieved by the linear interpolation method (& =1);
Bottom Right: Linear interpolation solution disparity map.

Now let us do the similar experiment on another scene —"”Flowerpots”. The setup
parameters are shown in table 6.7 and the results of the experiment are illustrated at the
figure 6.7.
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Figure 6.7: Experiment V: “Flowerpots” scene: Top Left: The middle frame of the scene; Top Right:
Ground truth disparity map; Middle Left: Distribution of the bad pixels in the solution achieved by the
first order Taylor expansion (& =1); Middle Right: First order Taylor expansion solution disparity map;
Bottom Left: Distribution of the bad pixels in the solution achieved by the linear interpolation method
(8 =1); Bottom Right: Linear interpolation solution disparity map.

As it was ought to be expected the results are very similar, expect some small
artifacts, which are appears on the object’s borders and the nearest points of the objects.
Also we can see that the number of features on both solution pictures is the same.
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Table 6.7: “Flowerpots” scene: setup parameters.
First order Taylor Linear
expansion interpolation

Comparing the percentage of bad pixels in the solution maps gained by the
methods of interest, we conclude that the method of linear interpolation gives again
better results on the scenes with massive objects than the method of the first order
Taylor expansion (see table 6.8).

Table 6.8: “Flowerpots” scene: percentage of bad pixels for differentd .
First order Taylor Linear
expansion interpolation

15,48 % 10,55 %
8,82 % 5,13 %
5,13 % 2,47 %
2,21 % 1,79 %
1,79 % 1,33 %

6.3.2 Getting rid of the coarse levels

At the conclusion to the paragraph 6.3, we can write that the method of linear
interpolation is more accurate then the method of first order Taylor expansion, it does
not require the warping technique directly and a big number of the coarse levels, what
makes it more fast and reliable. In addition we may say that if we combine the linear
interpolation method with the method of automatic control of process parameters, we
can get rid of the coarse levels and make all the calculations on the fine level. The
experiments, described in this section show reliability of such approach, and that the
variation process still capable to avoid getting stuck in a local minima.

The evolution of parameters we can observe in the table 6.9. In the first column we
see the setup parameters that are defined by a user, and in the next columns follow the
parameters which choose the solver during the iteration process.

Table 6.9: “Art” scene: setup parameters evolution.

It x 10°
parameter

3 1,5 0
1000 100 10 500 300

Tichonov Tichonov Tichonov 0,5 0,3

Tichonov Tichonov Tichonov 0,03 0,0025
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Now let us observe the figure 6.8, which shows how it works. The initial depth
displacement for the solution was set to 12 pixels and the total amount of iterations to 4
thousand. At the table 6.9 we see that during the first 2 thousand iterations the solver
uses the Tichonov regularization, which does not require an additional lambda
parameter. Moreover, during the first 2 thousand iterations the solver uses a very big
smoothness parameter ¢ and a large image presmoothing parameter p. At these steps,
the solver creates a very smooth disparity map — the fundament for all the subsequent
calculations. Exactly this guaranties us that we will not get stuck in poor local minima.

> near 22px

Figure 6.8: Experiment VI: Evolution of “Art” scene: Top Row: The disparity map before calculations,
after the 2000 iterations and after 3000 iterations; Second Row: Corresponding to the top row distribution
maps of bad pixels (5 =1); Third Row: The disparity map after 3,5, 3,8, 4 thousand of iterations; Bottom
Row: Corresponding to the third row distribution maps of bad pixels (5 =1).
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At the next one thousand iterations, the solver reduces both smoothness parameters
@ and p, and creates more precise and less overblurred solution. The disparity map
after this step looks like the usual initial data map for the finest level in case if we used
the coarse levels technique. At the next step, the solver even more reduces the
smoothness parameters. This time the small details appear, like brushes and small holes
in the rings. Also at this time some undesirable noise appears (see figure 6.8, the first
picture of the third row).

Starting from the 3500-th iteration the solver starts using Charbonnier penalization
in data and smoothness terms, it rises again the smoothness parameter ¢. That
eliminates the noise from the previous step and due to the nonlinear regularization
preserves small important details. At the last 2 hundred iterations of variational
process, the solver reduces all the parameters to press out at the end as much details as
possible — the smaller 4, leads to penalizing the data term’s influence in energy

functional and therefore to the disparity map overblurring. That’s why the parameter ¢
is also reduced. The smaller A, makes the borders of objects sharper (see figure 6.8).

=> near 22px

Figure 6.9: Experiment VI: “Art” scene: Top Left: Distribution of the bad pixels in the solution achieved
by the linear interpolation method with using the coarse levels (5 =1); Top Right: Linear interpolation
solution disparity map with using the coarse levels; Bottom Left: Distribution of the bad pixels in the
solution achieved by the linear interpolation method without using the coarse levels (& =1); Bottom
Right: Linear interpolation solution disparity map without using the coarse levels.
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At the figure 6.9 we compare the results achieved by the method of linear
interpolation with and without using the coarse levels technique. As we can see the
results are very similar except the small details. The method of automatic setup variable
calibration during the calculations not only makes the variational process faster, but
makes it also more sensitive to the small details and handles them wisely and precise.

In the table 6.10 we compare the results of the linear interpolation method with
coarse levels (and without automatic adjustment technique) and without coarse levels
(and with automatic adjustment technique):

Table 6.10: “Art” scene: percentage of bad pixels for different o .

Linear Linear
interpolation 8 CL  interpolation 1 CL

18,66 % 13,67 %
13,98 % 10,66 %
11,58 % 9,44 %
9,44 % 7,26 %
7,96 % 541 %

We may conclude, that the method of linear interpolation in combination with the
method of controlling the matching process and automatic setup parameters correction
is faster than existing methods (we do not talk about the real-time methods, which use
the multigrid techniques, which, besides, are possible also to apply to our method) may
handle the problem of depth-map reconstruction without coarse levels, without
warping technique and may give better results in means of percentage of bad pixels
estimation. We finish this section with the table 6.11, where the capacities of the
methods are compared:

Table 6.11: Method capacities versus the number of coarse levels.

First order Taylor Linear

CL

expansion interpolation

+warping +
- +

— + controlling

6.4 Two cameras vs. multiple cameras

In this section we make experiments with the “Cones”, “Teddy” and famous
“Tsukuba” scenes. This time, each stereo image consists of five bitmap pictures. The
stereo images of the “Cones” and “Teddy” scenes have resolution 450 x 375 pixels and
the stereo image of “Tsukuba” scene has resolution 384 x 288 pixels. In the experiments
of this section we used no coarse levels due to the method of linear interpolation and
interactive parameters adjustment. The displacement of objects in the scenes varies
between 4 and 16 pixels. The scale factor here is equal to 16.
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Figure 6.10: Experiment VII: “Cones” scene: Top Left: The middle frame of the scene; Top Right: Ground
truth disparity map; Left Column: Distribution of the bad pixels in the solution achieved by the 2, 3 and 5
cameras from top till bottom (§ =0,75); Right Column: 2, 3 and 5 cameras solution disparity map from

top till bottom.
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At the figure 6.10 we can observe the “cones” scene and the results gained by using
two, three and five cameras. As we can see they are very similar. Even the distributions
of bad pixels for these solutions are almost indistinguishable by a human eye. So let us
consider the table 6.12, where the precise percentages of bad pixels are brought:

Table 6.12: “Cones” scene, percentage of bad pixels for different O .
5 Cameras

2 Cameras 3 Cameras

4,44 % 3,76 % 5,09 %
3,18 % 2,79 % 3,46 %
2,32 % 2,04 % 2,52 %
1,46 % 1,36 % 1,65 %
1,04 % 1,01 % 1,15 %

Here we can conclude that the result disparity map, achieved by using information
from the 3 cameras appears to be the best and the result disparity map, achieved by
using information from the 5 cameras appears to be the worst. Anyway, the difference
of percentage of bad pixels does not vary significantly and the method based on the 3
cameras does not win a lot from the method based on 2 cameras. At the other hand we
conclude, that the additional information from additional cameras does not always help
to achieve better results.

Now let us proceed to the next scene. If we look at the table 6.13 we can realise that
the results for the “Teddy” scene is more interesting — here we can not say which of the
solution disparity map is definitely better or worse:

Table 6.13: “Teddy” scene, percentage of bad pixels for different o .
5 Cameras

2 Cameras 3 Cameras

5,66 Y 7,66 % 3,75 %
2,75 % 3,15 % 2,58 %
2,01 % 2,19 % 2 %

0,95 % 0,89 % 1,07 %
0,51 % 0,49 % 0,61 %

We see that the variational method that uses information from five cameras is more
robust to the small details, since for the small threshold & it gives the best results. But
at the same time it gives the worse results for the large ¢. It can be considered as an
evidence of that the method, based on five cameras, does not precede the whole objects
geometry precisely. Here the best result gives the method that uses information from
three cameras. In this section we use only consequent frames of the stereo images, so
our error estimation may be incomparable with the error measurement from the
[WMBO7]. Please refer to the appendix A

At the figure 6.11 the results for the threshold 6 = 0.5 are depicted. As we can see,
the 5 cameras result is more blurry, that’s why the regions inside objects are calculated
more properly than in other methods — the information from tree or two cameras is not
enough to fill these areas (see the distributions maps of the bad pixels at the next page):
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Figure 6.11: Experiment VIII: “Teddy” scene: Top Left: The middle frame of the scene; Top Right:
Ground truth disparity map; Left Column: Distribution of the bad pixels in the solution achieved by the
2, 3 and 5 cameras from top till bottom (§ =0,5); Right Column: 2, 3 and 5 cameras solution disparity

map from top till bottom.
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Now let us discuss famous Tsukuba scene. First of all watch the figure 6.12, where
the results for three and five cameras are compared. We do not consider now the case of
two cameras, since we know already the capability of the method and in this section we
focus the attention on the multi — view depth-map reconstruction and further
comparison with the results of other methods:

== near lépx

Figure 6.12: Experiment IX: “Tsukuba” scene: Top Left: The middle frame of the scene; Top Right:
Ground truth disparity map; Left Column: Distribution of the bad pixels in the solution achieved by the 3
and 5 cameras from top till bottom (& =1); Right Column: 3 and 5 cameras solution disparity map from
top till bottom.
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At the figure 6.12 we see that the results for the three and five cameras
reconstruction could be predicted by the previous conclusions of the experiments with
the “Cones” and “Teddy” scenes. Looking at the distributions of bad pixels, we can
notice that the distribution map for the five cameras case is richer with the red color.
But considering these maps more closely, we see that the distribution map of bad pixels
in the solution, achieved by the five cameras method has no red pixel at the background
as well as it has much more less “stand alone” red pixels. We just conclude again, that
the method based on five cameras is more accurate with the small details but still has
problems with the whole objects” geometry: if we look at the solution disparity maps
we see that the objects at the 5 cameras solution disparity map appear to be “wider”
and more blurry than the objects at the 3 cameras solution disparity map.

We would like to compare our results with the results, achieved by other existing
methods. The computer vision department’s web site of the Middlebury University
[WMBO07] provides us with the possibility to familiarize with the capabilities of more
than 30 depth-map reconstruction methods and to compare theirs solution disparity
maps for the “Tsukuba” scene with our own solution. Since the disparity map,
calculated with the help of the variational method in case of 3 cameras gives us better
results than in case of 5 cameras (see table 6.14), we compare it with the most interesting
three other results, calculated with help of alternative methods: the infection method
[OFPLO06], the method of dynamic programming, similar to Bobick and Intille [SS02]
and the graph cuts method [KZ01]. These depth maps and theirs distributions of bad
pixels are illustrated at the figure 6.13.

Table 6.14: “Tsukuba” scene, percentage of bad pixels for differento .
VM’ 3Cam VM 5Cam Infection Dyn. Prog.  Graph Cuts

18,4 % 13,6 % 22,1 % 19,6 % 6,19 %
8,17 % 9,86 % 21,9 % 19,6 % 6,10 %
6,19 % 8,17 % 7,95 % 4,12 % 1,19 %
4,62 % 6,53 % 7,36 % 4,12 % 1,19 %
3,9 % 5,6 % 6,34 % 3,43 % 0,88 %

In the table 6.14 we observe the percentage of bad pixels for our method and
alternative methods. We must confess that nowadays the graph cuts method allows
gaining the best results on “Tsukuba” scene. Nevertheless, as we can see from the table
6.14, the variational method, being a new and young approach for depth-map
reconstruction, is not only competitive with other methods, but even takes the high
stand among them.

At the figure 6.13 we compare the resulting disparity maps of variational method
with alternative ones. The distributions of bad pixels for the § =1 are also illustrated.
As we can see, the graph cuts method produces the best disparity map, and other
methods introduce some distortions. The result of the variational method looks pretty
good among other ones and we hope that further development will only improve it and
spread it widely.

7 Abbreviation from “variational method” (VM).
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Figure 6.13: Comparison of computer vision methods on “Tsukuba” scene (§ =1): Top Row: Our
method; Second Row: Infection method; Third Row: Method of dynamic programming; Bottom
Row: Graph cuts method.
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6.5 Conclusion

The variational methods are the most successful methods used for optic flow
computation. One of the contributions of this work is the investigation of application of
the famous variational methods of Horn-Schunck and Brox et al.,, to the problem of
depth-map reconstruction. We combine multiple constancy assumptions in the data
term and use different penalizing functions in the smoothness term. These penalizing
functions are bound with the diffusion process that is well known from physics. We
have discussed two approaches for the depth-map reconstruction: the depth-driven and
the disparity-driven; and investigated the behavior of the data term and the smoothness
term in the energy functionals constructed in accordance to these approaches. For this
purpose we have presented a powerful tool for analyzing the smoothness process
during the reconstruction — the RnB pyramid. Theoretical issues and experiments
showed the advantages of the disparity-driven method.

The main goal of all the research done in this thesis is to find a suitable variational
method for computing a correct depth-map for real-world data. During this research a
few fundamental improvements were discovered and offered. First of all, we have
offered to replace the popular nowadays method of the first order Taylor expansion,
which is used to get rid of implicitness in the data term and linearize it, with the more
general method of the linear interpolation. This improvement, almost without any
additional computational effort, allowed us to handle large object’s displacements in
pictures of a stereo image and to get rid of nasty warping technique, when using coarse
levels. The problem of the depth-map reconstruction with variational methods — as the
major part of the computer vision problems — leads to the iterative numerical problem,
or by other words, the process of calculation the depth-map in our case is the iteration
process. The second improvement, that we offered, is the automatic trace of the
convergence of the iteration process on run and even the control of it with the help of
invented technique. Such an improvement not only uncover the possibility to speed up
the process and release it from errors, but in combination with the method of linear
interpolation, mentioned right above, allows to get rid of coarse levels at all. In the
experimental sections of this thesis we have shown that these innovations work for real-
world data and give much better results than current techniques and methods.
Moreover, we have to mention, that the described improvements could be applied to
the original optic flow methods.

Another goal of this thesis is to define how the number of cameras and their
position / orientation influences the resulting depth-map. In order to successfully
accomplish this task, the general theory of multi — view depth-map reconstruction in
the meaning of the two frame model extension was constructed, applied and evaluated.
We made a numerous experiments and compared our results with the alternative
methods for the depth-map reconstruction.

We hope that with our work we have managed to connect the worlds of computer
vision with the world of variational methods. We further hope that our efforts have
contributed to the improvement of the highly accurate depth-map computation
techniques and the variational methods.






Appendix A

In the section 6.4 we compared the variational method with the alternative methods
for the depth-map reconstruction. Here we estimate gained results with the other
computer vision methods. We used the experiment setup strategy and the error
estimator, provides by the Middlebury University. Hereby we put here the table of the
percentages of bad pixels, generated at the Middlebury University webpage.

The table includes the error estimations for 4 scenes: “Tsukuba”, “Venus”, “Teddy”
and “Cones”. The first column contains the short name of a method, the second column
— the average rank of the method. Black numbers denote the percentage of bad pixels,
blue numbers — the rank of the method within the current column. The table uses the
following abbreviations:

nonocc — non occluded pixels only — during the estimation occluded pixels
were not considered;

all —  all the pixels — during the estimation all the pixels were considered;

disc — discontinuities — during the estimation only pixels from the areas were the
discontinuity arises were considered.

During the experiment the following results were used:

“Tsukuba” scene — 3 cameras result, linear interpolation and the matching process
controlling techniques were used. No coarse levels, no warping. Scale factor is
equal to 16.

“Venus” scene — 3 cameras result, linear interpolation and the matching process
controlling techniques were used. No coarse levels, no warping. Scale factor is
equal to 8.

“Teddy” scene — 5 cameras result, linear interpolation and the matching process
controlling techniques were used. No coarse levels, no warping. Scale factor is
equal to 4. (In the table 6.13 the scale factor while estimation is equal to 16).
“Cones” scene — 3 cameras result, linear interpolation and the matching process
controlling techniques were used. No coarse levels, no warping. Scale factor is
equal to 4. (In the table 6.12 the scale factor while estimation is equal to 16).

For more details, please refer to [WMBO7].
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0=1

Algorithm 0 Tsukuba

Rank nonocc  all disc nonocc  all disc nonocc  all disc nonocc  all disc

AdaptingBP 24 1115 1372 5796 0101 0212 1441 4223 7062 1183 2481 7922 7321
DoubleBP 38 0881 1291 4761 0.144 06010 2006 3552 8715 9.701 2903 9249 7802
SubPixDoubleBP 46 1248 17610 5987 0122 0464 1744 3451 8384 10.02 2934 8736 7913
AdaptOvrSegBP 86 16918 2.0417 5645 0143 0201 1472 70413 1117 16411 3.609 8968 8.849
PlaneFitBP 89 0974 18311 5264 0176 0515 1713 6.659 12111 1476 41716 10.717 10.6 15
SymBP+occ 93 0973 1759 5093 0165 0333 2197 6478 1076 17014 47920 10.718 10.9 16
Segm-+visib 9.8 13012 1573 69215 0.7917 1.0615 6.7618 5004 6.541 1234 3.7210 8.625 10.213
C-SemiGlob 103 2.6125 32920 9.8922 0259 0577 32412 5145 1188 13.05 2772 8354 8204
SO+borders 104 12911 1716 6.8312 02510 0536 2268 7.0212 12212 1639 39012 9.8513 10.214
DistinctSM 11.8 1217 1758 6399 03511 0.6913 26311 74517 13.015 18.117 39113 99115 8.326
OverSegmBP 120 1.6919 19714 84719 05014 0.6812 4.6915 6.7410 11910 1587 3.197 8817 8.8910
SegmentSupport 123 1259 1.624 6.6811 0258 0.6411 25910 84321 14219 18218 3.7711 9.8714 9.7712
RegionTreeDP 13.0 13915 1645 6.8513 0227 0577 1935 74216 1199 16813 6.3124 11923 11.819
EnhancedBP 13.8 0942 1747 5052 03512 08614 43414 81119 13317 18520 5.0922 11.119 11.017
AdaptWeight 147 13814 18512 69014 07115 1.1916 6.1316 7.8818 13.318 18.622 3.9715 9.7911 8.265
SegTreeDP 149 22123 27618 10324 04613 0609 2449 95824 15223 18419 3238 7861 8.838
ImproveSubPix 154 3.0026 3.6123 10926 0.8818 1.4717 7.1020 71214 12414 16.612 2965 8223 8557
SemiGlob 164 3.2627 39624 12829 1.0019 15718 11.324 6.026 12213 16310 3.066 9.7510 8.9011
RealtimeBP 193 14916 34022 78717 07716 19021 9.0023 8.7223 13216 17215 4.6118 11.621 12.423
GC+occ 203 1196 20116 6248 1.6424 21923 6.7517 11.227 17427 19.825 53623 12424 13.024
Layered 20.6 15717 1.8713 82818 1.3421 18519 6.8519 8.6422 14320 18521 6.5926 14.726 14.425
MultiCamGC 21.0 12710 19915 64810 2.7930 3.1327 3.6013 12.028 17.628 22.027 4.8921 11.822 12.121
GenModel 233 25724 47427 13.030 17225 3.0826 16928 6.8611 15.022 19.223 4.6419 14927 11418
RealTimeGPU 237 20522 42226 10.625 19227 29825 20330 72315 14421 17.616 6.4125 13.725 16.527

OUR METHOD 238 6.1935 82335 28.636 2.7029 3.5230 30.735 6.047 8173 1588 74627 9.8212 18228

CostRelax 243 47631 6.0830 20333 14123 24824 18529 8.1820 15924 23.828 39114 10216 11.820
ReliabilityDP 255 13613 33921 72516 23528 3.4829 12227 9.8226 16925 19.524 12.934 19.933 19.7 30
TreeDP 262 19921 28419 99623 14122 21022 7.7421 15932 23932 27.133 10.030 18.330 18.929
GC 26.8 19420 41225 93921 1.7926 34428 87522 16.533 25.034 24930 77028 18.229 15326
DP 306 41229 5.0429 12027 10.137 11.037 21.031 14.029 21.629 20.626 10.531 19.131 21.131
PhaseBased 31.8 42630 6.5331 15431 6.7133 81633 26.434 14.530 23.130 25.531 10.833 20.534 21.232
SSD+MF 323 52334 7.0732 24134 3.7431 51631 11926 16.534 24.833 32935 10.632 19.832 26.334
STICA 337 7.7036 9.6337 27.835 8.1934 9.5834 40337 15.831 23.231 37.736 9.8029 17.828 28.736
SO 340 50833 72234 12228 94436 10936 21932 19936 28237 26332 13.035 22.836 22333
PhaseDiff 347 4.8932 71133 16332 8.3435 9.7635 26.033 20.037 28.036 29.034 19.837 28537 27.535

Infection 354 79537 9.5436 28937

i
o~
—
(€8]
N

55332 31.736 17.735 25.135 44.437 14336 21335 38.037
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